1/2
Negative 0.5 is.
Sin(pi/6) = 1/2 is a true statement [not pie].
55 × sin 43 ÷ sin 23 ≈ 96
Do you mean Sin(pi/2) = 1 or [Sin(pi)] /2 = 0.0274....
1/2
Negative 0.5 is.
1
Sin(pi/6) = 1/2 is a true statement [not pie].
Do you mean Sin(pi/2) = 1 or [Sin(pi)] /2 = 0.0274....
55 × sin 43 ÷ sin 23 ≈ 96
[sin - cos + 1]/[sin + cos - 1] = [sin + 1]/cosiff [sin - cos + 1]*cos = [sin + 1]*[sin + cos - 1]iff sin*cos - cos^2 + cos = sin^2 + sin*cos - sin + sin + cos - 1iff -cos^2 = sin^2 - 11 = sin^2 + cos^2, which is true,
(6 Cosx)2
sin(405) = square root of 2 divided by 2 which is about 0.7071067812
Assuming the question refers to [sin(x)]/2 rather than sin(x/2) the answer is 1.
You need to know the trigonometric formulae for sin and cos of compound angles. sin(x+y) = sin(x)*cos(y)+cos(x)*sin(y) and cos(x+y) = cos(x)*cos(y) - sin(x)*sin(y) Using these, y = x implies that sin(2x) = sin(x+x) = 2*sin(x)cos(x) and cos(2x) = cos(x+x) = cos^2(x) - sin^2(x) Next, the triple angle formulae are: sin(3x) = sin(2x + x) = 3*sin(x) - 4*sin^3(x) and cos(3x) = 4*cos^3(x) - 3*cos(x) Then the left hand side = 2*[3*sin(x) - 4*sin^3(x)]/sin(x) + 2*[4*cos^3(x) - 3*cos(x)]/cos(x) = 6 - 8*sin^2(x) + 8cos^2(x) - 6 = 8*[cos^2(x) - sin^2(x)] = 8*cos(2x) = right hand side.
(cos x sin x) / (cos x sin x) = 1. The derivative of a constant, such as 1, is zero.