answersLogoWhite

0

The equation for the normal distribution is given by:

P(x) = 1/(σ√(2π)) * e^(-(x-µ)²/(2σ²))

If we want to find P(x) maximum when µ = 0 and σ =1, then we substitute x =0. Giving:

P(0) = 1/(1√(2π)) * e^(-(0-0)²/(2(1)²))

= 1/(√(2π))

≈ 0.3989

This is also the value of the standard deviation if you were to produce a normal distribution with a maximum of 1. In order to find this σ, you must solve σ in P(x) = 1/(σ√(2π)) * e^(-(x-µ)²/(2σ²)) = 1. As the largest value that e^(-(x-µ)²/(2σ²)) can take is 1, (when (-(x-µ)²/(2σ²)) = 0), you can solve σ in:

1/(σ√(2π)) = 1

σ = 1/(√(2π))

User Avatar

Anonymous

4y ago

Still curious? Ask our experts.

Chat with our AI personalities

SteveSteve
Knowledge is a journey, you know? We'll get there.
Chat with Steve
ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
BlakeBlake
As your older brother, I've been where you are—maybe not exactly, but close enough.
Chat with Blake
More answers

It is the maximum of a normal distribution with a mean = 0 and a standard deviation = 1

User Avatar

Anonymous

4y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is this 0.3989?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic