Because there is an angle involved. If - for example - the resistance (the real part) is 10 ohms, and the reactance (the imaginary part) is also 10, then there is an angle of 45 degrees; which actually means that this will be the displacement angle between the voltage and the current.
Impedance may just be specified with an angle; but it turns out that the calculations between voltage, current, and impedance correspond precisely to the calculations with complex numbers.
Because there is an angle involved. If - for example - the resistance (the real part) is 10 ohms, and the reactance (the imaginary part) is also 10, then there is an angle of 45 degrees; which actually means that this will be the displacement angle between the voltage and the current.
Impedance may just be specified with an angle; but it turns out that the calculations between voltage, current, and impedance correspond precisely to the calculations with complex numbers.
Because there is an angle involved. If - for example - the resistance (the real part) is 10 ohms, and the reactance (the imaginary part) is also 10, then there is an angle of 45 degrees; which actually means that this will be the displacement angle between the voltage and the current.
Impedance may just be specified with an angle; but it turns out that the calculations between voltage, current, and impedance correspond precisely to the calculations with complex numbers.
Because there is an angle involved. If - for example - the resistance (the real part) is 10 ohms, and the reactance (the imaginary part) is also 10, then there is an angle of 45 degrees; which actually means that this will be the displacement angle between the voltage and the current.
Impedance may just be specified with an angle; but it turns out that the calculations between voltage, current, and impedance correspond precisely to the calculations with complex numbers.
Chat with our AI personalities
Because there is an angle involved. If - for example - the resistance (the real part) is 10 ohms, and the reactance (the imaginary part) is also 10, then there is an angle of 45 degrees; which actually means that this will be the displacement angle between the voltage and the current.
Impedance may just be specified with an angle; but it turns out that the calculations between voltage, current, and impedance correspond precisely to the calculations with complex numbers.
A complex number is any number that can be represented in the form of a+bi, the real numbers are a and b, the imaginary number is i. Complex numbers are used in scientific and engineering fields.
Real and Complex. Real numbers are your everyday numbers that most people are familiar with and Complex numbers are Real numbers mixed with imaginary numbers. Of course this is a VERY BROAD oversimplification, and the question is somewhat vague in that there are other "types" of numbers that are used, but I think this is the answer you are looking for.
Complex numbers are a proper superset of real numbers. That is to say, real numbers are a proper subset of complex numbers.
No. Complex numbers is the highest set of numbers you can go, and there are no sets outside of complex numbers.
They are frequently used in Engineering applications.