Demographic parameters are characteristics used to describe a population, such as age, gender, income, education level, and occupation. These parameters are used to segment populations for research or marketing purposes.
Yes, interviews or surveys with samples of citizens can be used to estimate the feelings and beliefs of the entire population. By selecting a representative sample and conducting well-designed interviews or surveys, researchers can generalize the results to the broader population with a known degree of certainty.
The population of Japan (proper) is about 128 million, which is the figure from the census of 2010. However, a lower estimate of about 126.6 million was promulgated in 2012. This does not mean that the population decreased, but that different figures were used in the computation. The Japanese official monthly estimate for March 2013 was 127,360,000. That is about the average of the other figures.
The average number of people or things in an area can vary based on the size and population density of the area. It is calculated by dividing the total number of people or things by the area's size. Population density is often used to determine this average in areas with people.
Population stabilization: Common term for zero population growth, in which the birth rate equals the death rate and in addition where net immigration equals net emigration so that the population does not increase or decrease over time. Usually used in the context of stabilizing increasing populations.http://www.susps.org/overview/population_terms.html
point estimate
A point estimate is a single value (statistic) used to estimate a population value (parameter)true apex
mabye, mabye not
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
Either.
Many of the quantitative techniques fall into two broad categories: # Interval estimation # Hypothesis tests Interval Estimates It is common in statistics to estimate a parameter from a sample of data. The value of the parameter using all of the possible data, not just the sample data, is called the population parameter or true value of the parameter. An estimate of the true parameter value is made using the sample data. This is called a point estimate or a sample estimate. For example, the most commonly used measure of location is the mean. The population, or true, mean is the sum of all the members of the given population divided by the number of members in the population. As it is typically impractical to measure every member of the population, a random sample is drawn from the population. The sample mean is calculated by summing the values in the sample and dividing by the number of values in the sample. This sample mean is then used as the point estimate of the population mean. Interval estimates expand on point estimates by incorporating the uncertainty of the point estimate. In the example for the mean above, different samples from the same population will generate different values for the sample mean. An interval estimate quantifies this uncertainty in the sample estimate by computing lower and upper values of an interval which will, with a given level of confidence (i.e., probability), contain the population parameter. Hypothesis Tests Hypothesis tests also address the uncertainty of the sample estimate. However, instead of providing an interval, a hypothesis test attempts to refute a specific claim about a population parameter based on the sample data. For example, the hypothesis might be one of the following: * the population mean is equal to 10 * the population standard deviation is equal to 5 * the means from two populations are equal * the standard deviations from 5 populations are equal To reject a hypothesis is to conclude that it is false. However, to accept a hypothesis does not mean that it is true, only that we do not have evidence to believe otherwise. Thus hypothesis tests are usually stated in terms of both a condition that is doubted (null hypothesis) and a condition that is believed (alternative hypothesis). Website--http://www.itl.nist.gov/div898/handbook/eda/section3/eda35.htmP.s "Just giving info on what you don't know" - ;) Sillypinkjade----
The binomial distribution is defined by two parameters so there is not THE SINGLE parameter.
A prior parameter is a parameter that is specified before analyzing the data, usually based on prior knowledge or beliefs. A post hoc parameter is a parameter that is determined after analyzing the data, often through exploratory analysis or hypothesis testing. Prior parameters are often used in Bayesian statistics, while post hoc parameters are common in frequentist statistics.
Parameter is any attribute Statistic are the measured values of a parameter. A statistic is a sample value such as the average height of a group of students. A parameter is a functional constant such as the mean of a normal distribution. Statistics are often used to estimate parameters. For instance, a sample average is an estimate of the mean.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.