No. Its domain (or support) is from 0 to infinity.
Characteristics of the F-distribution1. It is not symmetric. The F-distribution is skewed right. That is, it is positively skewed.2. The shape of the F-distribution depends upon the degrees of freedom in the numerator and denominator. This is similar to the distribution and Student's t-distribution, whose shape depends upon their degrees of freedom.3. The total area under the curve is 1.4. The values of F are always greater than or equal to zero. That is F distribution can not be negative.5. It is asymptotic. As the value of X increases, the F curve approaches the X axis but never touches it. This is similar to the behavior of normal probability distribution.
In general the distribution of F-ratio means what
No they are not the same.
with replacement: binominal distribution f(k;n,p) = f(0;5,5/12) without replacement: hypergeometric distribution f(k;N,m,n) = f(0;12,5,5)
The F-distribution is either zero or positive, so there are no negative values for F. This feature of the F-distribution is similar to the chi-square distribution. The F-distribution is skewed to the right. Thus this probability distribution is nonsymmetrical.
No. Its domain (or support) is from 0 to infinity.
Characteristics of the F-distribution1. It is not symmetric. The F-distribution is skewed right. That is, it is positively skewed.2. The shape of the F-distribution depends upon the degrees of freedom in the numerator and denominator. This is similar to the distribution and Student's t-distribution, whose shape depends upon their degrees of freedom.3. The total area under the curve is 1.4. The values of F are always greater than or equal to zero. That is F distribution can not be negative.5. It is asymptotic. As the value of X increases, the F curve approaches the X axis but never touches it. This is similar to the behavior of normal probability distribution.
what is meant by a negative binomial distribution what is meant by a negative binomial distribution
In general the distribution of F-ratio means what
No, it is continuous.
Yes.
It is the so-called "half-normal distribution." Specifically, let X be a standard normal variate with cumulative distribution function F(z). Then its cumulative distribution function G(z) is given by Prob(|X| < z) = Prob(-z < X < z) = Prob(X < z) - Prob(X < -z) = F(z) - F(-z). Its probability distribution function g(z), z >= 0, therefore equals g(z) = Derivative of (F(z) - F(-z)) = f(z) + f(-z) {by the Chain Rule} = 2f(z) because of the symmetry of f with respect to zero. In other words, the probability distribution function is zero for negative values (they cannot be absolute values of anything) and otherwise is exactly twice the distribution of the standard normal.
The F distribution is used to test whether two population variances are the same. The sampled populations must follow the normal distribution. Therefore, as the sample size increases, the F distribution approaches the normal distribution.
No they are not the same.
No.It is asymmetric.
Yes it can be negative.