A random variable is a variable that can take different values according to a process, at least part of which is random.
For a discrete random variable (RV), a probability distribution is a function that assigns, to each value of the RV, the probability that the RV takes that value.
The probability of a continuous RV taking any specificvalue is always 0 and the distribution is a density function such that the probability of the RV taking a value between x and y is the area under the distribution function between x and y.
It is a probability distribution where when all of the values of a random variable occur with equal probability. Say X is the random variable, such as what number shows up when we roll a die. There are 6 possible outcomes, each with a 1/6 probability of showing up. If we create a probability distribution where X= 1,2,3,4,5, or 6, we note P(X=k)=1/k where k is any number between 1 and 6 in this case. The graph will be a rectangle.
It is true because the distribution is symmetrical about Z=0.
A probability density function (pdf) for a continuous random variable (RV), is a function that describes the probability that the RV random variable will fall within a range of values. The probability of the RV falling between two values is the integral of the relevant PDF. The normal or Gaussian distribution is one of the most common distributions in probability theory. Whatever the underlying distribution of a RV, the average of a set of independent observations for that RV will by approximately Gaussian.
Random variables is a function that can produce outcomes with different probability and random variates is the particular outcome of a random variable.
A discrete probability distribution is defined over a set value (such as a value of 1 or 2 or 3, etc). A continuous probability distribution is defined over an infinite number of points (such as all values between 1 and 3, inclusive).
A probability density function assigns a probability value for each point in the domain of the random variable. The probability distribution assigns the same probability to subsets of that domain.
None. The full name is the Probability Distribution Function (pdf).
They are the same. The full name is the Probability Distribution Function (pdf).
Assuming you mean random variable here. A random variable is term that can take have different values. for example a random variable x that represent the out come of rolling a dice, that is x can equal 1,2,3,4,5,or 6. Think of probability distribution as the mapping of likelihood of the out comes from an experiment. In the dice case, the probability distribution will tell you that there 1/6 the time you will get 1, 2,3....,or 6. this is called uniform distribution since all the out comes have that same probability of occurring.
It depends on what the random variable is, what its domain is, what its probability distribution function is. The probability that a randomly selected random variable has a value between 40 and 60 is probably quite close to zero.
what is density curve
It is a probability distribution where when all of the values of a random variable occur with equal probability. Say X is the random variable, such as what number shows up when we roll a die. There are 6 possible outcomes, each with a 1/6 probability of showing up. If we create a probability distribution where X= 1,2,3,4,5, or 6, we note P(X=k)=1/k where k is any number between 1 and 6 in this case. The graph will be a rectangle.
The formula, if any, depends on the probability distribution function for the variable. In the case of a discrete variable, X, this defines the probability that X = x. For a continuous variable, the probability density function is a continuous function, f(x), such that Pr(a < X < b) is the area under the function f, between a and b (or the definite integral or f, with respect to x, between a and b.
It is true because the distribution is symmetrical about Z=0.
True. Due to the symmetry of the normal distribution.
A random variable is a variable which can take different values and the values that it takes depends on some probability distribution rather than a deterministic rule. A random process is a process which can be in a number of different states and the transition from one state to another is random.
It is a probability distribution where when all of the values of a random variable occur with equal probability. Say X is the random variable, such as what number shows up when we roll a die. There are 6 possible outcomes, each with a 1/6 probability of showing up. If we create a probability distribution where X= 1,2,3,4,5, or 6, we note P(X=k)=1/k where k is any number between 1 and 6 in this case. The graph will be a rectangle.