differentiate the three types of variables from one another
Chat with our AI personalities
The dependent variable depends on the independent variable for its values as for example in the straight line equation: y = 2x+1 It is y that is the dependent variable and x the independent variable.
Smoking is not a variable. It is an act of doing something. Types of cigarettes is a qualitative variable.
The distinction between these two types of variables is whether the variable regress on another variable or not. Like in a linear regression the dependent variable (DV) regresses on the independent variable (IV), meaning that the DV is being predicted by the IV. Within SEM modelling this means that the exogenous variable is the variable that another variable regresses on. Exogenous variables can be recognized in a graphical version of the model, as the variables sending out arrowheads, denoting which variable it is predicting. A variable that regresses on a variable is always an endogenous variable even if this same variable is used as an variable to be regressed on.
If your dependent variable is dummy coded (binary) then you must use a logistic regression for you analysis. There are two types; logit and probit. Both types return very similar results and your decision on which to use is based on personal preference and discipline standards. Economics and marketing tend to use probit while sociology tends to use logit.
There are 3 types1.positive/ negative/zero/2.linear/non-linear3.simple/multiple/partial- If the direction is same,the relationship is positive-If the direction is opposite , the relationship is negative-If the amount of change is constant in different variable it is linear-If the amount of change is not constant in different variable is non- linear-If it is establishing a relationship between two characteristic then it is simple- If it is establishing a relationship between three or more characteristic then it is multiple-If it is establishing a relationship between only one of all the variable then it is partial