no
Chat with our AI personalities
Standard error (which is the standard deviation of the distribution of sample means), defined as σ/√n, n being the sample size, decreases as the sample size n increases. And vice-versa, as the sample size gets smaller, standard error goes up. The law of large numbers applies here, the larger the sample is, the better it will reflect that particular population.
The estimated standard deviation goes down as the sample size increases. Also, the degrees of freedom increase and, as they increase, the t-distribution gets closer to the Normal distribution.
Random Sampling increases the reliability and validity of your research findings. To begin with, Reliability: By randomly picking research participants, the likelihood that they are from different backgrounds/ have different experiences etc. is higher and hence, they are said to be more representative of the population of interest. EG: RQ: Do females have higher IQ? A case of random sampling will pick females who are housewives/ CEOs/ Indian/ 18yrs old/ Divorced etc. the list goes on. While a case of non-random sampling (such as picking participants at a bus stop) may only result in a sample of females who are 20 - 35 years old, working professionals. Validity: As reliability and validity are related, for the research findings to be reliable and generalizable to the population of interest, it first has to be a valid sample. Hence, from the above example, EG1 provides a valid sample, while EG2 is invalid.
The independent variable goes on the x-axis and the dependent variable goes on the y-axis.
The independent variable goes on the x axis.