(0.6745 * Standard deviation)/ (n^1/2)
:)
Chat with our AI personalities
high percent error is the absolute value of something that is multiplied
The mean absolute deviation for a set of data is a measure of the spread of data. It is calculated as follows:Find the mean (average) value for the set of data. Call it M.For each observation, O, calculate the deviation, which is O - M.The absolute deviation is the absolute value of the deviation. If O - M is positive (or 0), the absolute value is the same. If not, it is M - O. The absolute value of O - M is written as |O - M|.Calculate the average of all the absolute deviations.One reason for using the absolute value is that the sum of the deviations will always be 0 and so will provide no useful information. The mean absolute deviation will be small for compact data sets and large for more spread out data.
* * * * *No it is not.Step 1: Calculate the mean = sum of observations/number of observations.Step 2: For each observation, x, calculate deviation = x - mean.Step 3: Sum together the NON_NEGATIVE values of the above deviations.Step 4: Divide by the number of observations.That is the mean absolute deviation, not the rubbish given below!
Standard error of the sample mean is calculated dividing the the sample estimate of population standard deviation ("sample standard deviation") by the square root of sample size.
It means theres a high amount of variation between the results used to calculate the mean value for a particular sample or experiment