answersLogoWhite

0

Yes. Since the standard deviation is defined as the square root of the variance, it can be said that the higher the standard deviation, the higher the variance.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
RossRoss
Every question is just a happy little opportunity.
Chat with Ross

Add your answer:

Earn +20 pts
Q: Is the higher the standard deviation the greater the variation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

Does the size of the standard deviation of a data set depend on where the center is?

Yes it does. The center, which is the mean, affects the standard deviation in a potisive way. The higher the mean is, the bigger the standard deviation.


Why the standard deviation of set of data will always be greater than zero?

The standard deviation is always be equal or higher than zero. If my set of data is limited to whole numbers, all of which are equal, the standard deviation is 0. In all other situations, we first calculate the difference of each number from the average and then calculate the square of the difference. While the difference can be a negative, the square of the difference can not be. The square of the standard deviation has to be positive, since it is the sum of all positive numbers. If we calculate s2 = 4, then s can be -2 or +2. By convention, we take the positive root.


Does 84 percent of people do higher than 1 standard deviation below the mean?

yes


How does a sample size impact the standard deviation?

If I take 10 items (a small sample) from a population and calculate the standard deviation, then I take 100 items (larger sample), and calculate the standard deviation, how will my statistics change? The smaller sample could have a higher, lower or about equal the standard deviation of the larger sample. It's also possible that the smaller sample could be, by chance, closer to the standard deviation of the population. However, A properly taken larger sample will, in general, be a more reliable estimate of the standard deviation of the population than a smaller one. There are mathematical equations to show this, that in the long run, larger samples provide better estimates. This is generally but not always true. If your population is changing as you are collecting data, then a very large sample may not be representative as it takes time to collect.


What is the relationship between the mean and standard deviation in statistics?

The 'standard deviation' in statistics or probability is a measure of how spread out the numbers are. It mathematical terms, it is the square root of the mean of the squared deviations of all the numbers in the data set from the mean of that set. It is approximately equal to the average deviation from the mean. If you have a set of values with low standard deviation, it means that in general, most of the values are close to the mean. A high standard deviation means that the values in general, differ a lot from the mean. The variance is the standard deviation squared. That is to say, the standard deviation is the square root of the variance. To calculate the variance, we simply take each number in the set and subtract it from the mean. Next square that value and do the same for each number in the set. Lastly, take the mean of all the squares. The mean of the squared deviation from the mean is the variance. The square root of the variance is the standard deviation. If you take the following data series for example, the mean for all of them is '3'. 3, 3, 3, 3, 3, 3 all the values are 3, they're the same as the mean. The standard deviation is zero. This is because the difference from the mean is zero in each case, and after squaring and then taking the mean, the variance is zero. Last, the square root of zero is zero so the standard deviation is zero. Of note is that since you are squaring the deviations from the mean, the variance and hence the standard deviation can never be negative. 1, 3, 3, 3, 3, 5 - most of the values are the same as the mean. This has a low standard deviation. In this case, the standard deviation is very small since most of the difference from the mean are small. 1, 1, 1, 5, 5, 5 - all the values are two higher or two lower than the mean. This series has the highest standard deviation.