answersLogoWhite

0


Best Answer

Yes. Since the standard deviation is defined as the square root of the variance, it can be said that the higher the standard deviation, the higher the variance.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is the higher the standard deviation the greater the variation?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

Does the size of the standard deviation of a data set depend on where the center is?

Yes it does. The center, which is the mean, affects the standard deviation in a potisive way. The higher the mean is, the bigger the standard deviation.


Why the standard deviation of set of data will always be greater than zero?

The standard deviation is always be equal or higher than zero. If my set of data is limited to whole numbers, all of which are equal, the standard deviation is 0. In all other situations, we first calculate the difference of each number from the average and then calculate the square of the difference. While the difference can be a negative, the square of the difference can not be. The square of the standard deviation has to be positive, since it is the sum of all positive numbers. If we calculate s2 = 4, then s can be -2 or +2. By convention, we take the positive root.


Does 84 percent of people do higher than 1 standard deviation below the mean?

yes


How does a sample size impact the standard deviation?

If I take 10 items (a small sample) from a population and calculate the standard deviation, then I take 100 items (larger sample), and calculate the standard deviation, how will my statistics change? The smaller sample could have a higher, lower or about equal the standard deviation of the larger sample. It's also possible that the smaller sample could be, by chance, closer to the standard deviation of the population. However, A properly taken larger sample will, in general, be a more reliable estimate of the standard deviation of the population than a smaller one. There are mathematical equations to show this, that in the long run, larger samples provide better estimates. This is generally but not always true. If your population is changing as you are collecting data, then a very large sample may not be representative as it takes time to collect.


What is the relationship between the mean and standard deviation in statistics?

The 'standard deviation' in statistics or probability is a measure of how spread out the numbers are. It mathematical terms, it is the square root of the mean of the squared deviations of all the numbers in the data set from the mean of that set. It is approximately equal to the average deviation from the mean. If you have a set of values with low standard deviation, it means that in general, most of the values are close to the mean. A high standard deviation means that the values in general, differ a lot from the mean. The variance is the standard deviation squared. That is to say, the standard deviation is the square root of the variance. To calculate the variance, we simply take each number in the set and subtract it from the mean. Next square that value and do the same for each number in the set. Lastly, take the mean of all the squares. The mean of the squared deviation from the mean is the variance. The square root of the variance is the standard deviation. If you take the following data series for example, the mean for all of them is '3'. 3, 3, 3, 3, 3, 3 all the values are 3, they're the same as the mean. The standard deviation is zero. This is because the difference from the mean is zero in each case, and after squaring and then taking the mean, the variance is zero. Last, the square root of zero is zero so the standard deviation is zero. Of note is that since you are squaring the deviations from the mean, the variance and hence the standard deviation can never be negative. 1, 3, 3, 3, 3, 5 - most of the values are the same as the mean. This has a low standard deviation. In this case, the standard deviation is very small since most of the difference from the mean are small. 1, 1, 1, 5, 5, 5 - all the values are two higher or two lower than the mean. This series has the highest standard deviation.

Related questions

Standard Deviation of Color Matching?

The standard deviation of color matching refers to the variability or dispersion of color values within a set of samples or data points that are being matched or compared. A higher standard deviation indicates a greater degree of variation in color values, while a lower standard deviation suggests more consistency or similarity in color matching.


Annualized standard deviation?

http://www.hedgefund.net/pertraconline/statbody.cfmStandard Deviation -Standard Deviation measures the dispersal or uncertainty in a random variable (in this case, investment returns). It measures the degree of variation of returns around the mean (average) return. The higher the volatility of the investment returns, the higher the standard deviation will be. For this reason, standard deviation is often used as a measure of investment risk. Where R I = Return for period I Where M R = Mean of return set R Where N = Number of Periods N M R = ( S R I ) ¸ N I=1 N Standard Deviation = ( S ( R I - M R ) 2 ¸ (N - 1) ) ½ I = 1Annualized Standard DeviationAnnualized Standard Deviation = Monthly Standard Deviation ´ ( 12 ) ½ Annualized Standard Deviation *= Quarterly Standard Deviation ´ ( 4 ) ½ * Quarterly Data


Does the size of the standard deviation of a data set depend on where the center is?

Yes it does. The center, which is the mean, affects the standard deviation in a potisive way. The higher the mean is, the bigger the standard deviation.


What determines the standard deviation to be high?

Standard deviation is a measure of the scatter or dispersion of the data. Two sets of data can have the same mean, but different standard deviations. The dataset with the higher standard deviation will generally have values that are more scattered. We generally look at the standard deviation in relation to the mean. If the standard deviation is much smaller than the mean, we may consider that the data has low dipersion. If the standard deviation is much higher than the mean, it may indicate the dataset has high dispersion A second cause is an outlier, a value that is very different from the data. Sometimes it is a mistake. I will give you an example. Suppose I am measuring people's height, and I record all data in meters, except on height which I record in millimeters- 1000 times higher. This may cause an erroneous mean and standard deviation to be calculated.


Which is used as an index of precision?

The Coefficient of Variation (CV) is commonly used as an index of precision. It is a measure of relative variability that expresses the standard deviation as a percentage of the mean. A lower CV indicates higher precision and vice versa.


What is cva in biology?

CVA in biology stands for "Coefficient of Variation." It is a measure of relative variability, calculated as the standard deviation divided by the mean, and it is used to compare the variability of different data sets. A higher CVA value indicates greater relative variability within a data set.


Why the standard deviation of set of data will always be greater than zero?

The standard deviation is always be equal or higher than zero. If my set of data is limited to whole numbers, all of which are equal, the standard deviation is 0. In all other situations, we first calculate the difference of each number from the average and then calculate the square of the difference. While the difference can be a negative, the square of the difference can not be. The square of the standard deviation has to be positive, since it is the sum of all positive numbers. If we calculate s2 = 4, then s can be -2 or +2. By convention, we take the positive root.


Does 84 percent of people do higher than 1 standard deviation below the mean?

yes


What is the relevance of calculating standard deviation?

The Standard Deviation will give you an idea of how 'spread apart' the data is. Suppose the average gasoline prices in your town are 2.75 per gallon. A low standard deviation means many of the gas stations will have prices close to that price, while a high standard deviation means you would find prices much higher and also much lower than that average price.


Why is the standard deviation of a distribution of means smaller than the standard deviation of the population from which it was derived?

The reason the standard deviation of a distribution of means is smaller than the standard deviation of the population from which it was derived is actually quite logical. Keep in mind that standard deviation is the square root of variance. Variance is quite simply an expression of the variation among values in the population. Each of the means within the distribution of means is comprised of a sample of values taken randomly from the population. While it is possible for a random sample of multiple values to have come from one extreme or the other of the population distribution, it is unlikely. Generally, each sample will consist of some values on the lower end of the distribution, some from the higher end, and most from near the middle. In most cases, the values (both extremes and middle values) within each sample will balance out and average out to somewhere toward the middle of the population distribution. So the mean of each sample is likely to be close to the mean of the population and unlikely to be extreme in either direction. Because the majority of the means in a distribution of means will fall closer to the population mean than many of the individual values in the population, there is less variation among the distribution of means than among individual values in the population from which it was derived. Because there is less variation, the variance is lower, and thus, the square root of the variance - the standard deviation of the distribution of means - is less than the standard deviation of the population from which it was derived.


What does the higher standard deviation data set explain?

A higher standard deviation means that the data are fluctuating more widely with respect to the mean. It could mean there are some bad samples, or it could simply mean that the data are not as tightly bound to the mean as anticipated. An unexpected standard deviation should be evaluated, using more robust analyses techniques, so as to differentiate between the various explanations. This is an expected part of error analysis, without which an analysis is incomplete.


How does a sample size impact the standard deviation?

If I take 10 items (a small sample) from a population and calculate the standard deviation, then I take 100 items (larger sample), and calculate the standard deviation, how will my statistics change? The smaller sample could have a higher, lower or about equal the standard deviation of the larger sample. It's also possible that the smaller sample could be, by chance, closer to the standard deviation of the population. However, A properly taken larger sample will, in general, be a more reliable estimate of the standard deviation of the population than a smaller one. There are mathematical equations to show this, that in the long run, larger samples provide better estimates. This is generally but not always true. If your population is changing as you are collecting data, then a very large sample may not be representative as it takes time to collect.