No, it is not
Chat with our AI personalities
No. Standard deviation is the square root of a non-negative number (the variance) and as such has to be at least zero. Please see the related links for a definition of standard deviation and some examples.
No. But they are related. If a sample of size n is taken, a standard deviation can be calculated. This is usually denoted as "s" however some textbooks will use the symbol, sigma. The standard deviation of a sample is usually used to estimate the standard deviation of the population. In this case, we use n-1 in the denomimator of the equation. The variance of the sample is the square of the sample's standard deviation. In many textbooks it is denoted as s2. In denoting the standard deviation and variance of populations, the symbols sigma and sigma2 should be used. One last note. We use standard deviations in describing uncertainty as it's easier to understand. If our measurements are in days, then the standard deviation will also be in days. The variance will be in units of days2.
I believe you are interested in calculating the variance from a set of data related to salaries. Variance = square of the standard deviation, where: s= square root[sum (xi- mean)2/(n-1)] where mean of the set is the sum of all data divided by the number in the sample. X of i is a single data point (single salary). If instead of a sample of data, you have the entire population of size N, substitute N for n-1 in the above equation. You may find more information on the interpretation of variance, by searching wikipedia under variance and standard deviation. I note that an advantage of using the standard deviation rather than variance, is because the standard deviation will be in the same units as the mean.
Mean and standard deviation are not related in any way.
You cannot because the standard deviation is not related to the median.