answersLogoWhite

0


Best Answer

The coefficient, also commonly known as R-square, is used as a guideline to measure the accuracy of the model.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: What does the coefficient of determination explain in regression?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What is numerical range of regression coefficient?

ɪf the regresion coefficient is the coefficient of determination, then it's range is between 0 or 1. ɪf the regression coefficient is the correaltion coefficient (which i think it is) the it must lie between -1 or 1.


If the coefficient of determination for a data set containing 12 points is 0.5 6 of the data points must lie on the regression line for the data set.?

That is not true. It is possible for a data set to have a coefficient of determination to be 0.5 and none of the points to lies on the regression line.


How do you determine coefficient of determination in excel?

= CORREL(x values,y values) ***clarification**** CORREL gives you the correlation coefficient (r), which is different than the coefficient of determination (R2) outside of simple linear regression situations.


Can A regression equation have a negative coefficient of correlation and a negative coefficient of determination?

It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.


How is coefficient of determination and coefficient of correlation is related?

coefficient of determination

Related questions

What is numerical range of regression coefficient?

ɪf the regresion coefficient is the coefficient of determination, then it's range is between 0 or 1. ɪf the regression coefficient is the correaltion coefficient (which i think it is) the it must lie between -1 or 1.


If the coefficient of determination for a data set containing 12 points is 0.5 6 of the data points must lie on the regression line for the data set.?

That is not true. It is possible for a data set to have a coefficient of determination to be 0.5 and none of the points to lies on the regression line.


How do you determine coefficient of determination in excel?

= CORREL(x values,y values) ***clarification**** CORREL gives you the correlation coefficient (r), which is different than the coefficient of determination (R2) outside of simple linear regression situations.


What is a measure of the explanatory power of the regression model?

Regression analysis describes the relationship between two or more variables. The measure of the explanatory power of the regression model is R2 (i.e. coefficient of determination).


Can A regression equation have a negative coefficient of correlation and a negative coefficient of determination?

It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.


What is regression coefficient and correlation coefficient?

The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.


How is coefficient of determination and coefficient of correlation is related?

coefficient of determination


What measures the percentage of total variation in the response variable that is explained by the least squares regression line?

The coefficient of determination, also known as R-squared, measures the proportion of the variance in the dependent variable that is predictable from the independent variable(s) in a regression model. It ranges from 0 to 1, with higher values indicating a better fit of the model to the data.


How would one explain the coefficient of determination?

The coefficient of determination, is when someone tries to predict the outcome of the testing of a hypothesis, or their guess at to what will happen. It helps determine how well outcomes are determined beforehand.


Can regression be meassurd?

Regression can be measured by its coefficients ie regression coefficient y on x and x on y.


Properties of regression coefficient-statistics?

8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.


What Are The Properties Of Regression Coefficient?

(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity. (c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, provided r > 0. (d) Regression coefficients are independent of the changes of origin but not of scale.