ɪf the regresion coefficient is the coefficient of determination, then it's range is between 0 or 1. ɪf the regression coefficient is the correaltion coefficient (which i think it is) the it must lie between -1 or 1.
That is not true. It is possible for a data set to have a coefficient of determination to be 0.5 and none of the points to lies on the regression line.
= CORREL(x values,y values) ***clarification**** CORREL gives you the correlation coefficient (r), which is different than the coefficient of determination (R2) outside of simple linear regression situations.
It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.
coefficient of determination
ɪf the regresion coefficient is the coefficient of determination, then it's range is between 0 or 1. ɪf the regression coefficient is the correaltion coefficient (which i think it is) the it must lie between -1 or 1.
That is not true. It is possible for a data set to have a coefficient of determination to be 0.5 and none of the points to lies on the regression line.
= CORREL(x values,y values) ***clarification**** CORREL gives you the correlation coefficient (r), which is different than the coefficient of determination (R2) outside of simple linear regression situations.
Regression analysis describes the relationship between two or more variables. The measure of the explanatory power of the regression model is R2 (i.e. coefficient of determination).
It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.
The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.
coefficient of determination
The coefficient of determination, also known as R-squared, measures the proportion of the variance in the dependent variable that is predictable from the independent variable(s) in a regression model. It ranges from 0 to 1, with higher values indicating a better fit of the model to the data.
The coefficient of determination, is when someone tries to predict the outcome of the testing of a hypothesis, or their guess at to what will happen. It helps determine how well outcomes are determined beforehand.
Regression can be measured by its coefficients ie regression coefficient y on x and x on y.
8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.
(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity. (c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, provided r > 0. (d) Regression coefficients are independent of the changes of origin but not of scale.