The standard error increases.
Decreases
yes
It approaches a normal distribution.
Decrease
The standard error increases.
Decreases
yes
It approaches a normal distribution.
mean
decreases
The width of the confidence interval increases.
Decrease
No, it is not.
No.
The standard error should decrease as the sample size increases. For larger samples, the standard error is inversely proportional to the square root of the sample size.The standard error should decrease as the sample size increases. For larger samples, the standard error is inversely proportional to the square root of the sample size.The standard error should decrease as the sample size increases. For larger samples, the standard error is inversely proportional to the square root of the sample size.The standard error should decrease as the sample size increases. For larger samples, the standard error is inversely proportional to the square root of the sample size.
You have not defined M, but I will consider it is a statistic of the sample. For an random sample, the expected value of a statistic, will be a closer approximation to the parameter value of the population as the sample size increases. In more mathematical language, the measures of dispersion (standard deviation or variance) from the calculated statistic are expected to decrease as the sample size increases.