answersLogoWhite

0

The optimum sample size is based on a trade-off between the precision required for the estimate(s) and the cost of sampling. The precision required depends on the consequences of making the wrong decision. I would expect much higher precision for a medical trial than I would for a weather forecast.

The necessary sample size, to attain that precision will depend on the characteristic that is being estimated (mean, variance, proportion), the underlying distribution and the test being used. Then there is the cost (money and time) that depend on the sample size.

Since you have not bothered to share any information on any of these factors, I cannot provide a more useful answer.

The optimum sample size is based on a trade-off between the precision required for the estimate(s) and the cost of sampling. The precision required depends on the consequences of making the wrong decision. I would expect much higher precision for a medical trial than I would for a weather forecast.

The necessary sample size, to attain that precision will depend on the characteristic that is being estimated (mean, variance, proportion), the underlying distribution and the test being used. Then there is the cost (money and time) that depend on the sample size.

Since you have not bothered to share any information on any of these factors, I cannot provide a more useful answer.

The optimum sample size is based on a trade-off between the precision required for the estimate(s) and the cost of sampling. The precision required depends on the consequences of making the wrong decision. I would expect much higher precision for a medical trial than I would for a weather forecast.

The necessary sample size, to attain that precision will depend on the characteristic that is being estimated (mean, variance, proportion), the underlying distribution and the test being used. Then there is the cost (money and time) that depend on the sample size.

Since you have not bothered to share any information on any of these factors, I cannot provide a more useful answer.

The optimum sample size is based on a trade-off between the precision required for the estimate(s) and the cost of sampling. The precision required depends on the consequences of making the wrong decision. I would expect much higher precision for a medical trial than I would for a weather forecast.

The necessary sample size, to attain that precision will depend on the characteristic that is being estimated (mean, variance, proportion), the underlying distribution and the test being used. Then there is the cost (money and time) that depend on the sample size.

Since you have not bothered to share any information on any of these factors, I cannot provide a more useful answer.

User Avatar

Wiki User

10y ago

Still curious? Ask our experts.

Chat with our AI personalities

ReneRene
Change my mind. I dare you.
Chat with Rene
DevinDevin
I've poured enough drinks to know that people don't always want advice—they just want to talk.
Chat with Devin
RafaRafa
There's no fun in playing it safe. Why not try something a little unhinged?
Chat with Rafa
More answers

The optimum sample size is based on a trade-off between the precision required for the estimate(s) and the cost of sampling. The precision required depends on the consequences of making the wrong decision. I would expect much higher precision for a medical trial than I would for a weather forecast.

The necessary sample size, to attain that precision will depend on the characteristic that is being estimated (mean, variance, proportion), the underlying distribution and the test being used. Then there is the cost (money and time) that depend on the sample size.

Since you have not bothered to share any information on any of these factors, I cannot provide a more useful answer.

User Avatar

Wiki User

10y ago
User Avatar

Add your answer:

Earn +20 pts
Q: What is optimum sample size?
Write your answer...
Submit
Still have questions?
magnify glass
imp