In regression analysis , heteroscedasticity means a situation in which the variance of the dependent variable varies across the data. Heteroscedasticity complicates analysis because many methods in regression analysis are based on an assumption of equal variance.
The marine regression analysis showed that the new subdivision was responsible for the coastline erosion.The wrinkle cream showed a regression in age lines.
A mix of linear regression and analysis of variance. analysis of covariance is responsible for intergroup variance when analysis of variance is performed.
Correlation and regression analysis can help business to investigate the determinants of key variables such as their sales. Variations in a companies sales are likely to be related to variation in product prices,consumers,incomes,tastes and preference's multiple regression analysis can be used to investigate the nature of this relationship and correlation analysis can be used to test the goodness of fit. Regression can also be used to estimate the trend in a time series to make forecast
used to predict the dependent variable
Before undertaking regression analysis, one must decide on which variables will be analysed. Regression analysis is predicting a variable from a number of other variables.
of, pertaining to, or determined by regression analysis: regression curve; regression equation. dictionary.com
Mohammad F. Qadir has written: 'Using percentile regression for estimating the maximum species richness line' -- subject(s): Statistical methods, Regression analysis, Species diversity
how can regression model approach be useful in lean construction concept in the mass production of houses
Galtan
Regression analysis is a statistical technique to measure the degree of linear agreement in variations between two or more variables.
Howard E. Doran has written: 'Applied regression analysis in econometrics' -- subject(s): Econometrics, Regression analysis
Peihua Qiu has written: 'Image processing and jump regression analysis' -- subject(s): Regression analysis, Image processing
ffhdh
ROGER KOENKER has written: 'L-estimation for linear models' -- subject(s): Regression analysis 'L-estimation for linear models' -- subject(s): Regression analysis 'Computing regression quantiles'
Regression analysis is based on the assumption that the dependent variable is distributed according some function of the independent variables together with independent identically distributed random errors. If the error terms were not stochastic then some of the properties of the regression analysis are not valid.
In regression analysis , heteroscedasticity means a situation in which the variance of the dependent variable varies across the data. Heteroscedasticity complicates analysis because many methods in regression analysis are based on an assumption of equal variance.