answersLogoWhite

0


Best Answer

correlation we can do to find the strength of the variables. but regression helps to fit the best line

User Avatar

Wiki User

โˆ™ 2012-10-15 06:32:55
This answer is:
User Avatar
Study guides

Statistics

20 cards

What are the brain's association areas

What is a field hockey stick made of

How old is she is rebecca stevenson

When during pregnancy should one quit smoking

โžก๏ธ
See all cards
4.33
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
12 Reviews

Add your answer:

Earn +20 pts
Q: What is the different between correlation and regression?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What are the properties of correlation coefficient?

The correlation coefficient is symmetrical with respect to X and Y i.e.The correlation coefficient is the geometric mean of the two regression coefficients. or .The correlation coefficient lies between -1 and 1. i.e. .


Properties of regression coefficient-statistics?

8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.


What is the importance of correlation and regression analysis in business decision making?

Correlation and regression analysis can help business to investigate the determinants of key variables such as their sales. Variations in a companies sales are likely to be related to variation in product prices,consumers,incomes,tastes and preference's multiple regression analysis can be used to investigate the nature of this relationship and correlation analysis can be used to test the goodness of fit. Regression can also be used to estimate the trend in a time series to make forecast


Can A regression equation have a negative coefficient of correlation and a negative coefficient of determination?

It's not quite possible for the coefficient of determination to be negative at all, because of its definition as r2 (coefficient of correlation squared). The coefficient of determination is useful since tells us how accurate the regression line's predictions will be but it cannot tell us which direction the line is going since it will always be a positive quantity even if the correlation is negative. On the other hand, r (the coefficient of correlation) gives the strength and direction of the correlation but says nothing about the regression line equation. Both r and r2 are found similarly but they are typically used to tell us different things.


What is Definition of linear regression and correlation in statistics?

Whenever you are given a series of data points, you make a linear regression by estimating a line that comes as close to running through the points as possible. To maximize the accuracy of this line, it is constructed as a Least Square Regression Line (LSRL for short). The regression is the difference between the actual y value of a data point and the y value predicted by your line, and the LSRL minimizes the sum of all the squares of your regression on the line. A Correlation is a number between -1 and 1 that indicates how well a straight line represents a series of points. A value greater than one means it shows a positive slope; a value less than one, a negative slope. The farther away the correlation is from 0, the less accurately a straight line describes the data.

Related questions

What is regression coefficient and correlation coefficient?

The strength of the linear relationship between the two variables in the regression equation is the correlation coefficient, r, and is always a value between -1 and 1, inclusive. The regression coefficient is the slope of the line of the regression equation.


What is a line that shows the correlation between two data sets called?

There is no line that shows the correlation between two data sets. The correlation is a variable that ranges between -1 and +1.You may be thinking about regression which, although related, is not the same thing.There is no line that shows the correlation between two data sets. The correlation is a variable that ranges between -1 and +1.You may be thinking about regression which, although related, is not the same thing.There is no line that shows the correlation between two data sets. The correlation is a variable that ranges between -1 and +1.You may be thinking about regression which, although related, is not the same thing.There is no line that shows the correlation between two data sets. The correlation is a variable that ranges between -1 and +1.You may be thinking about regression which, although related, is not the same thing.


What is the relationship between correlation coefficient and linear regreassion?

A correlation coefficient is a value between -1 and 1 that shows how close of a good fit the regression line is. For example a regular line has a correlation coefficient of 1. A regression is a best fit and therefore has a correlation coefficient close to one. the closer to one the more accurate the line is to a non regression line.


What is the difference between correlation and regression?

Coral taste bad dont eat it


What do researchers use to represent graphically the correlation between two variables?

A linear regression


What are the advantages of regression over correlation?

Correlation is a measure of association between two variables and the variables are not designated as dependent or independent. Simple regression is used to examine the relationship between one dependent and one independent variable. It goes beyond correlation by adding prediction capabilities.


Distinguish between correlation and regression?

Correlation is a measure of the degree of agreement in the changes (variances) in two or more variables. In the case of two variables, if one of them increases by the same amount for a unit increase in the other, then the correlation coefficient is +1. If one of them decreases by the same amount for a unit increase in the other, then the correlation coefficient is -1. Lesser agreement results in an intermediate value. Regression involves estimating or quantifying this relationship. It is very important to remember that correlation and regression measure only the linear relationship between variables. A symmetrical relationshup, for example, y = x2 between values of x with equal magnitudes (-a < x < a), has a correlation coefficient of 0, and the regression line will be a horizontal line. Also, a relationship found using correlation or regression need not be causal.


What is the difference between Multicollinearity and Autocorrelation?

The difference between multicollinearity and auto correlation is that multicollinearity is a linear relationship between 2 or more explanatory variables in a multiple regression while while auto-correlation is a type of correlation between values of a process at different points in time, as a function of the two times or of the time difference.


What are the properties of correlation coefficient?

The correlation coefficient is symmetrical with respect to X and Y i.e.The correlation coefficient is the geometric mean of the two regression coefficients. or .The correlation coefficient lies between -1 and 1. i.e. .


Can a correlation problem also be a regression problem?

Yes.


What Are The Properties Of Regression Coefficient?

(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity. (c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, provided r > 0. (d) Regression coefficients are independent of the changes of origin but not of scale.


Properties of regression coefficient-statistics?

8.7.4 Properties of Regression Coefficients:(a) Correlation coefficient is the geometric mean between the regression coefficients. (b) If one of the regression coefficients is greater than unity, the other must be less than unity.(c) Arithmetic mean of the regression coefficients is greater than the correlation coefficient r, providedr > 0.(d) Regression coefficients are independent of the changes of origin but not of scale.

People also asked