It is 5/52 for a single card, drawn randomly.
The probability of drawing three black cards one at a time with replacement from a standard deck of 52 cards is 1/3x1/2x26/52, which is 0.833.
The probability of drawing a diamond is a standard deck of 52 cards is 13 in 52, or 1 in 4, or 0.25.
To calculate the probability of drawing a black card and a 7 from a standard deck of 52 cards, we first determine the total number of black cards and the number of 7s in the deck. There are 26 black cards (13 spades and 13 clubs) and 4 sevens in the deck. The probability of drawing a black card and a 7 is calculated by multiplying the probability of drawing a black card (26/52) by the probability of drawing a 7 (4/52), resulting in a probability of (26/52) * (4/52) = 1/26 or approximately 0.0385.
The probability of drawing three black cards from a standard pack depends on:whether the cards are drawn at random,whether or not the drawn cards are replaced before the next card is drawn,whether the probability that is required is that three black cards are drawn after however many draws, or that three black cards are drawn in a sequence at some stage - but not necessarily the first three, or that the first three cards cards that are drawn are black.There is no information on any of these and so it is not possible to be certain about the answer.The probability of drawing three black cards, in three random draws - without replacement - from a standard deck, is 0.1176 approx.
The answer depends on how many cards are drawn. If you draw 40 cards, the probability is 0. The probability of not drawing a spade in a random draw of one card from a standard deck is 39/52 = 3/4.
The probability of drawing three black cards one at a time with replacement from a standard deck of 52 cards is 1/3x1/2x26/52, which is 0.833.
The probability of drawing one black seven from a standard deck of cards is 2/52 = 1/26. The probability of drawing the other black seven from the remaining 51 cards is 1/51. Therefore the probability of drawing both black sevens from a deck of cards = 1/26 x 1/51 = 1/1326 ~ 0.000754 (3sf).
The probability of drawing a red or black card from a standard deck of playing cards is 1 (a certainty). This is because these are the only options available.
The probability of drawing an Ace in a standard deck of 52 cards is 4 in 52, or 1 in 13, or about 0.07692.
The probability of NOT drawing a spade from a standard deck of cards is 75 is an example of a mistated question - a standard deck of cards is 52, not 75.
Probability of not drawing a black six from a deck of cards = 1 - probability of drawing a black 6 = 1 - 2/52 = 50/52 = 25/26.
The probability of drawing a diamond is a standard deck of 52 cards is 13 in 52, or 1 in 4, or 0.25.
To calculate the probability of drawing a black card and a 7 from a standard deck of 52 cards, we first determine the total number of black cards and the number of 7s in the deck. There are 26 black cards (13 spades and 13 clubs) and 4 sevens in the deck. The probability of drawing a black card and a 7 is calculated by multiplying the probability of drawing a black card (26/52) by the probability of drawing a 7 (4/52), resulting in a probability of (26/52) * (4/52) = 1/26 or approximately 0.0385.
The probability of drawing three black cards from a standard pack depends on:whether the cards are drawn at random,whether or not the drawn cards are replaced before the next card is drawn,whether the probability that is required is that three black cards are drawn after however many draws, or that three black cards are drawn in a sequence at some stage - but not necessarily the first three, or that the first three cards cards that are drawn are black.There is no information on any of these and so it is not possible to be certain about the answer.The probability of drawing three black cards, in three random draws - without replacement - from a standard deck, is 0.1176 approx.
The probability is one half.
The probability of drawing a pair from a standard deck of 52 cards is 3 in 51, or 1 in 17, or about 0.0588.
The probability depends on:whether the cards are drawn randomly,how many cards are drawn, andwhether the cards are replaced before drawing the next card.If only 2 cards are drawn randomly, and without replacement, the probability is 0.00075 approximately.