answersLogoWhite

0

zero. We have a sample from which a statistic is calculated and will challenge our held belief or "status quo" or null hypothesis. Now you present a case where the null hypothesis is true, so the only possible error we could make is to reject the null hypothesis- a type I error.

Hypothesis testing generally sets a criteria for the test statistic to reject Ho or fail to reject Ho, so both type 1 and 2 errors are possible.

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Statistics

If a test of hypothesis has a type I error probability of 0.01 it means?

It means that, if the null hypothesis is true, there is still a 1% chance that the outcome is so extreme that the null hypothesis is rejected.


What does the p value have to be for you to reject it in chi square conclusions?

The p value for rejecting an hypothesis is more closely related to the type of errors and their consequences. The p value is not determined by the chi square - or any other - test but by the impact of the decision made on the basis of the test. The two types of errors to be considered are: what is the probability that you reject the null hypothesis when it is actually true (type I error), and what is the probability that you accept the null hypothesis when, in fact, it is false (type I error).. Reducing one type of error increase the other and there is a balance to be struck between the two. This balance will be influenced by the costs associated with making the wrong error. In real life, the effects (costs/benefits) of decisions are very asymmetrical.


What is a beta error?

A beta error is another term for a type II error, an instance of accepting the null hypothesis when the null hypothesis is false.


Relationship between type 1 error and type 2 error?

In statistics, there are two types of errors for hypothesis tests: Type 1 error and Type 2 error. Type 1 error is when the null hypothesis is rejected, but actually true. It is often called alpha. An example of Type 1 error would be a "false positive" for a disease. Type 2 error is when the null hypothesis is not rejected, but actually false. It is often called beta. An example of Type 2 error would be a "false negative" for a disease. Type 1 error and Type 2 error have an inverse relationship. The larger the Type 1 error is, the smaller the Type 2 error is. The smaller the Type 2 error is, the larger the Type 2 error is. Type 1 error and Type 2 error both can be reduced if the sample size is increased.


How do cumulative Type 1 errors affect decision making?

This is when you reject a null hypothesis even though it is actually true...Example:1. A man is on trial for murder, he is actually INNOCENT, but found GUILTY - That is a Type I error2. A man is on trial for murder he is actually GUILTY, but found INNOCENT - That is a Type II error

Related Questions

What is the probability of making type 1 error when null hypothesis is true?

It is the same as the significance level of the test - often 5%.


If a test of hypothesis has a type 1 error probability 01?

If the type 1 error has a probability of 01 = 1, then you will always reject the null hypothesis (false positive) - even when the evidence is wholly consistent with the null hypothesis.


If a test of hypothesis has a type I error probability of 0.01 it means?

It means that, if the null hypothesis is true, there is still a 1% chance that the outcome is so extreme that the null hypothesis is rejected.


What does the p value have to be for you to reject it in chi square conclusions?

The p value for rejecting an hypothesis is more closely related to the type of errors and their consequences. The p value is not determined by the chi square - or any other - test but by the impact of the decision made on the basis of the test. The two types of errors to be considered are: what is the probability that you reject the null hypothesis when it is actually true (type I error), and what is the probability that you accept the null hypothesis when, in fact, it is false (type I error).. Reducing one type of error increase the other and there is a balance to be struck between the two. This balance will be influenced by the costs associated with making the wrong error. In real life, the effects (costs/benefits) of decisions are very asymmetrical.


Type 1 error and type 2 error?

In statistics: type 1 error is when you reject the null hypothesis but it is actually true. Type 2 is when you fail to reject the null hypothesis but it is actually false. Statistical DecisionTrue State of the Null HypothesisH0 TrueH0 FalseReject H0Type I errorCorrectDo not Reject H0CorrectType II error


What is the difference between a Type I error and a Type II error in hypothesis testing?

In hypothesis testing, a Type I error occurs when a true null hypothesis is incorrectly rejected, while a Type II error occurs when a false null hypothesis is not rejected.


What is an alpha error?

An alpha error is another name in statistics for a type I error, rejecting the null hypothesis when the null hypothesis is true.


What is a beta error?

A beta error is another term for a type II error, an instance of accepting the null hypothesis when the null hypothesis is false.


Relationship between type 1 error and type 2 error?

In statistics, there are two types of errors for hypothesis tests: Type 1 error and Type 2 error. Type 1 error is when the null hypothesis is rejected, but actually true. It is often called alpha. An example of Type 1 error would be a "false positive" for a disease. Type 2 error is when the null hypothesis is not rejected, but actually false. It is often called beta. An example of Type 2 error would be a "false negative" for a disease. Type 1 error and Type 2 error have an inverse relationship. The larger the Type 1 error is, the smaller the Type 2 error is. The smaller the Type 2 error is, the larger the Type 2 error is. Type 1 error and Type 2 error both can be reduced if the sample size is increased.


What does 5 percent level of significance means?

A 5 percent level of significance, often denoted as α = 0.05, is a threshold used in hypothesis testing to determine whether to reject the null hypothesis. It indicates that there is a 5 percent probability of rejecting the null hypothesis when it is actually true, which corresponds to a 5 percent risk of making a Type I error. In practical terms, if a p-value obtained from a statistical test is less than 0.05, the results are considered statistically significant, suggesting that the observed effect is unlikely to have occurred by random chance alone.


What is Hypothesis Testing of Type I Error?

Rejecting a true null hypothesis.


How do cumulative Type 1 errors affect decision making?

This is when you reject a null hypothesis even though it is actually true...Example:1. A man is on trial for murder, he is actually INNOCENT, but found GUILTY - That is a Type I error2. A man is on trial for murder he is actually GUILTY, but found INNOCENT - That is a Type II error