answersLogoWhite

0

What else can I help you with?

Related Questions

What is the proportion of the total area under the normal curve within plus or minus 2 standard deviations?

95%


What is the proportion of the total area under the normal curve within plus and minus two standard deviations of the mean?

95


In a standard normal distribution 95 percent of the data is within plus standard deviations of the mean?

95% is within 2 standard deviations of the mean.


What percentage of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution?

99.7% of scores fall within -3 and plus 3 standard deviations around the mean in a normal distribution.


In a normal distribution what percentage of the data falls within 2 standard deviation of the mean?

In a normal distribution, approximately 95% of the data falls within 2 standard deviations of the mean. This is part of the empirical rule, which states that about 68% of the data is within 1 standard deviation, and about 99.7% is within 3 standard deviations. Therefore, the range within 2 standard deviations captures a significant majority of the data points.


What is the probability of an event occurring within 5 standard deviations from the mean?

The probability of an event occurring within 5 standard deviations from the mean is extremely rare, as it falls outside the normal range of outcomes.


What percentage of scores falls between the mean and -2 to 2 standard deviations under the normal curve?

In a normal distribution, approximately 68% of scores fall within one standard deviation of the mean (between -1 and +1 standard deviations). About 95% of scores fall within two standard deviations (between -2 and +2 standard deviations). Therefore, the percentage of scores that falls specifically between the mean and -2 to 2 standard deviations is about 95% minus the 50% that is below the mean, resulting in approximately 45%.


Statistic question help?

When using Chebyshev's Theorem the minimum percentage of sample observations that will fall within two standard deviations of the mean will be __________ the percentage within two standard deviations if a normal distribution is assumed Empirical Rule smaller than greater than the same as


In a normal standard curve approximately what percentages of scores will fall within 1 standard deviation from the mean?

In a normal standard curve, approximately 68% of scores fall within one standard deviation from the mean. This is part of the empirical rule, which states that about 95% of scores lie within two standard deviations, and about 99.7% fall within three standard deviations. Thus, the majority of data points are clustered around the mean.


Given an unknown What percentage of data falls within 0.75 standard deviation of the mean?

In a normal distribution, approximately 57.5% of the data falls within 0.75 standard deviations of the mean. This is derived from the cumulative distribution function (CDF) of the normal distribution, which indicates that about 27.5% of the data lies between the mean and 0.75 standard deviations above it, and an equal amount lies between the mean and 0.75 standard deviations below it. Therefore, when combined, it results in around 57.5% of data being within that range.


What is true in about a normal distribution?

A normal distribution is a symmetric, bell-shaped curve characterized by its mean and standard deviation. Approximately 68% of the data falls within one standard deviation from the mean, about 95% within two standard deviations, and around 99.7% within three standard deviations, commonly referred to as the empirical rule. Additionally, the mean, median, and mode of a normal distribution are all equal and located at the center of the distribution. This property makes the normal distribution fundamental in statistics and probability theory.


What percentage of a normal distribution is within 2 standard deviations of the mean?

I believe the standard deviations are measured from the median, not the mean.1 Standard Deviation is 34% each side of median, so that is 68% total.2 Standard Deviations is 48% each side of median, so that is 96% total.