Median, mode, quartiles, quintiles and so on, except when you get to very large number of percentiles.
The mean is most affected. Mode and Median are not influenced as much by outliers.
there are no limits to outliers there are no limits to outliers
The median is least affected by an extreme outlier. Mean and standard deviation ARE affected by extreme outliers.
The box and whisker plot informs you of the 5 number summary, which comprises of the minimum and maximum, the median, and the first and third quartiles. The minumum and maximum give you the range, which is not given by measures of central tendancy. also, if it a modified box and whisker plot, outliers will be marked separatley from the rest of the plot, outliers are also not included in the measures of center.
The sample range could be used as an index of dispersion. However, there are objections. One is that this statistic is obviously sensitive to outliers. Another is that for many population distributions there are measures with much better characteristics, even ignoring the problem of outliers.
The mean is most affected. Mode and Median are not influenced as much by outliers.
the mean is affected by outliers
Yes.
Extreme outliers can greatly distort statistical measures such as the mean and standard deviation, making them less representative of the data. They can also impact the accuracy of predictive models by leading to overfitting. In some cases, outliers may signal data quality issues or the presence of unexpected patterns in the data that warrant further investigation.
there are no limits to outliers there are no limits to outliers
The median is least affected by an extreme outlier. Mean and standard deviation ARE affected by extreme outliers.
The box and whisker plot informs you of the 5 number summary, which comprises of the minimum and maximum, the median, and the first and third quartiles. The minumum and maximum give you the range, which is not given by measures of central tendancy. also, if it a modified box and whisker plot, outliers will be marked separatley from the rest of the plot, outliers are also not included in the measures of center.
The sample range could be used as an index of dispersion. However, there are objections. One is that this statistic is obviously sensitive to outliers. Another is that for many population distributions there are measures with much better characteristics, even ignoring the problem of outliers.
The mean is the least resistant to outliers because it is influenced by every value in the dataset, including extreme values. In contrast, the median, which represents the middle value, is less affected by outliers, as it depends only on the order of the data. The mode, being the most frequently occurring value, is also generally unaffected by outliers. Thus, in terms of sensitivity to extreme values, the mean is the most vulnerable.
be safe
The most appropriate measures of center for a data set depend on its distribution. If the data is normally distributed, the mean is a suitable measure of center; however, if the data is skewed or contains outliers, the median is more appropriate. For measures of spread, the standard deviation is ideal for normally distributed data, while the interquartile range (IQR) is better for skewed data or when outliers are present, as it focuses on the middle 50% of the data.
The ISBN of Outliers - book - is 9780316017923.