random sampling
Chat with our AI personalities
random sampling
1. Simple Random Sampling (SRS) - For SRS, every element has an equal probability of being chosen. In fact, any pair, triplet, and so on of elements have an equal chance of random selection. Sometimes, SRS can have problems because the randomness of the sample does not represent the population. For example, a SRS of one hundred people will likely produce about fifty men and fifty women, but it's also possible that there will only be ten men and ninety women selected due to natural sampling variation. 2. Systematic Sampling - For this type of sampling, every nth element is sampled. For example, if names were to be sampled through systematic sampling, every tenth name would be picked from the telephone book. However, this type of sampling may result in an unrepresentative sample of the population. 3. Stratified Sampling - When a population has certain categories, samples can be purposely collected from each strata (category). For example, there may be different strata for age groups if the person sampling is interested in variations between differences in age. One problem with stratified sampling is that it requires a more expensive cost than simple random sampling or systematic sampling. 4. Convenience Sampling - This type of sampling involves drawing the easiest samples to reach from the population. This may include surveying customers outside of a grocery store. Because the sample is limited to a certain time/day, it is unrepresentative of the entire population.
Simple random sampling.
statistical.
Stratified Random Sampling. Google it. .