Usually the sum of squared deviations from the mean is divided by n-1, where n is the number of observations in the sample.
Chat with our AI personalities
Variance, t-value, sample mean
It is a biased estimator. S.R.S leads to a biased sample variance but i.i.d random sampling leads to a unbiased sample variance.
The sample variance is obtained by dividing SS by the degrees of freedom (n-1). In this case, the sample variance is SS/(n-1) = 300/(4-1) = 300/3 = 100 In order to get the standard error, you can do one of two things: a) divide the variance by n and get the square root of the result: square.root (100/4) = square.root(25) = 5, or b) get the standard deviation and divide it by the square root of n. 10/square.root(4) = 10/2 = 5
No.
I believe you are interested in calculating the variance from a set of data related to salaries. Variance = square of the standard deviation, where: s= square root[sum (xi- mean)2/(n-1)] where mean of the set is the sum of all data divided by the number in the sample. X of i is a single data point (single salary). If instead of a sample of data, you have the entire population of size N, substitute N for n-1 in the above equation. You may find more information on the interpretation of variance, by searching wikipedia under variance and standard deviation. I note that an advantage of using the standard deviation rather than variance, is because the standard deviation will be in the same units as the mean.