answersLogoWhite

0


Best Answer

The sample mean is an unbiased estimator of the population mean because the average of all the possible sample means of size n is equal to the population mean.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Why is the sample mean an unbiased estimator of the population mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What biased estimator will have a reduced bias based on an increased sample size?

The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.


What are the main qualities of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


What are the quality of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


Is sample standard deviation the same as standard deviation?

No, the standard deviation is a measure of the entire population. The sample standard deviation is an unbiased estimator of the population. It is different in notation and is written as 's' as opposed to the greek letter sigma. Mathematically the difference is a factor of n/(n-1) in the variance of the sample. As you can see the value is greater than 1 so it will increase the value you get for your sample mean. Essentially, this covers for the fact that you are unlikely to obtain the full population variation when you sample.


What is the the relationship between population and sample parameter and statistic?

The relations depend on what measures. The sample mean is an unbiased estimate for the population mean, with maximum likelihood. The sample maximum is a lower bound for the population maximum.

Related questions

What is the best estimator of population mean?

The best estimator of the population mean is the sample mean. It is unbiased and efficient, making it a reliable estimator when looking to estimate the population mean from a sample.


What biased estimator will have a reduced bias based on an increased sample size?

The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.


Differentiate estimate and estimator?

It can get a bit confusing! The estimate is the value obtained from a sample. The estimator, as used in statistics, is the method used. There's one more, the estimand, which is the population parameter. If we have an unbiased estimator, then after sampling many times, or with a large sample, we should have an estimate which is close to the estimand. I will give you an example. I have a sample of 5 numbers and I take the average. The estimator is taking the average of the sample. It is the estimator of the mean of the population. The average = 4 (for example), this is my estmate.


Which of the following best describes the condition necessary to justify using a pooled estimator of the population variance?

1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.


What are the main qualities of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


What are the quality of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


Is sample standard deviation the same as standard deviation?

No, the standard deviation is a measure of the entire population. The sample standard deviation is an unbiased estimator of the population. It is different in notation and is written as 's' as opposed to the greek letter sigma. Mathematically the difference is a factor of n/(n-1) in the variance of the sample. As you can see the value is greater than 1 so it will increase the value you get for your sample mean. Essentially, this covers for the fact that you are unlikely to obtain the full population variation when you sample.


What is the the relationship between population and sample parameter and statistic?

The relations depend on what measures. The sample mean is an unbiased estimate for the population mean, with maximum likelihood. The sample maximum is a lower bound for the population maximum.


What does it mean to say that the sample variance provides an unbiased estimate of the population variance?

It means you can take a measure of the variance of the sample and expect that result to be consistent for the entire population, and the sample is a valid representation for/of the population and does not influence that measure of the population.


What is the difference a parameter and a statistic?

A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)


What is the difference between a parameter and a statistic?

A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)


How is it that a random samples gives a fairly accurate representation of public opinion?

The main point here is that the Sample Mean can be used to estimate the Population Mean. What I mean by that is that on average, the Sample Mean is a good estimator of the Population Mean. There are two reasons for this, the first is that the Bias of the estimator, in this case the Sample Mean, is zero. A Bias other than zero overestimates or underestimates the Population Mean depending on its value. Bias = Expected value of estimator - mean. This can be expressed as EX(pheta) - mu (pheta) As the Sample Mean has an expected value (what value it expects to take on average) of itself then the greek letter mu which stands for the Sample Mean will provide a Bias of 0. Bias = mu - mu = 0 Secondly as the Variance of the the Sample Mean is mu/(n-1) this leads us to believe that the Variance will fall as we increase the sample size. Variance is a measure of the dispersion of values collected from the centre of the data. Where the centre of the data is a fixed value equal to the median. Put Bias and Variance together and you get the Mean Squared Error which is the error associated with using an estimator of the Population Mean. The formula for Mean Squared Error = Bias^2 + Variance With our estimator we can see that as the Bias = zero, it has no relevance to the error and as the variance falls as the sample size increases then we can conclude that the error associated with using the sample mean will fall as the sample size increases. Conclusions: The Random Sample of public opinon will on average lead to a true representation of the Population Mean and therefore the random samle you have will represnt the public opinion to a fairly high degree of accuracy. Finally, this degree of accuracy will rise incredibly quickly as the sample size rises thus leading to a very accurate representation (on average)