answersLogoWhite

0

The sample mean is an unbiased estimator of the population mean because the average of all the possible sample means of size n is equal to the population mean.

User Avatar

Wiki User

13y ago

Still curious? Ask our experts.

Chat with our AI personalities

ProfessorProfessor
I will give you the most educated answer.
Chat with Professor
EzraEzra
Faith is not about having all the answers, but learning to ask the right questions.
Chat with Ezra
JordanJordan
Looking for a career mentor? I've seen my fair share of shake-ups.
Chat with Jordan

Add your answer:

Earn +20 pts
Q: Why is the sample mean an unbiased estimator of the population mean?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Statistics

What biased estimator will have a reduced bias based on an increased sample size?

The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.


What are the quality of a good estimator?

A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.


Is sample standard deviation the same as standard deviation?

No, the standard deviation is a measure of the entire population. The sample standard deviation is an unbiased estimator of the population. It is different in notation and is written as 's' as opposed to the greek letter sigma. Mathematically the difference is a factor of n/(n-1) in the variance of the sample. As you can see the value is greater than 1 so it will increase the value you get for your sample mean. Essentially, this covers for the fact that you are unlikely to obtain the full population variation when you sample.


What is the the relationship between population and sample parameter and statistic?

The relations depend on what measures. The sample mean is an unbiased estimate for the population mean, with maximum likelihood. The sample maximum is a lower bound for the population maximum.


What is the difference between a parameter and a statistic?

A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)