The sample mean is an unbiased estimator of the population mean because the average of all the possible sample means of size n is equal to the population mean.
The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
No, the standard deviation is a measure of the entire population. The sample standard deviation is an unbiased estimator of the population. It is different in notation and is written as 's' as opposed to the greek letter sigma. Mathematically the difference is a factor of n/(n-1) in the variance of the sample. As you can see the value is greater than 1 so it will increase the value you get for your sample mean. Essentially, this covers for the fact that you are unlikely to obtain the full population variation when you sample.
The relations depend on what measures. The sample mean is an unbiased estimate for the population mean, with maximum likelihood. The sample maximum is a lower bound for the population maximum.
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
The best point estimator of the population mean would be the sample mean.
Yes, the sample mean is an unbiased estimator of the population mean. This means that, on average, the sample mean will equal the true population mean when taken from a large number of random samples. In other words, as the sample size increases, the expected value of the sample mean converges to the population mean, making it a reliable estimator in statistical analysis.
The sample variance is considered an unbiased estimator of the population variance because it corrects for the bias introduced by estimating the population variance from a sample. When calculating the sample variance, we use ( n-1 ) (where ( n ) is the sample size) instead of ( n ) in the denominator, which compensates for the degree of freedom lost when estimating the population mean from the sample. This adjustment ensures that the expected value of the sample variance equals the true population variance, making it an unbiased estimator.
The standard deviation. There are many, and it's easy to construct one. The mean of a sample from a normal population is an unbiased estimator of the population mean. Let me call the sample mean xbar. If the sample size is n then n * xbar / ( n + 1 ) is a biased estimator of the mean with the property that its bias becomes smaller as the sample size rises.
It can get a bit confusing! The estimate is the value obtained from a sample. The estimator, as used in statistics, is the method used. There's one more, the estimand, which is the population parameter. If we have an unbiased estimator, then after sampling many times, or with a large sample, we should have an estimate which is close to the estimand. I will give you an example. I have a sample of 5 numbers and I take the average. The estimator is taking the average of the sample. It is the estimator of the mean of the population. The average = 4 (for example), this is my estmate.
1- Assuming this represents a random sample from the population, the sample mean is an unbiased estimator of the population mean. 2-Because they are robust, t procedures are justified in this case. 3- We would use z procedures here, since we are interested in the population mean.
A "Good" estimator is the one which provides an estimate with the following qualities:Unbiasedness: An estimate is said to be an unbiased estimate of a given parameter when the expected value of that estimator can be shown to be equal to the parameter being estimated. For example, the mean of a sample is an unbiased estimate of the mean of the population from which the sample was drawn. Unbiasedness is a good quality for an estimate, since, in such a case, using weighted average of several estimates provides a better estimate than each one of those estimates. Therefore, unbiasedness allows us to upgrade our estimates. For example, if your estimates of the population mean µ are say, 10, and 11.2 from two independent samples of sizes 20, and 30 respectively, then a better estimate of the population mean µ based on both samples is [20 (10) + 30 (11.2)] (20 + 30) = 10.75.Consistency: The standard deviation of an estimate is called the standard error of that estimate. The larger the standard error the more error in your estimate. The standard deviation of an estimate is a commonly used index of the error entailed in estimating a population parameter based on the information in a random sample of size n from the entire population.An estimator is said to be "consistent" if increasing the sample size produces an estimate with smaller standard error. Therefore, your estimate is "consistent" with the sample size. That is, spending more money to obtain a larger sample produces a better estimate.Efficiency: An efficient estimate is one which has the smallest standard error among all unbiased estimators.The "best" estimator is the one which is the closest to the population parameter being estimated.
No, the standard deviation is a measure of the entire population. The sample standard deviation is an unbiased estimator of the population. It is different in notation and is written as 's' as opposed to the greek letter sigma. Mathematically the difference is a factor of n/(n-1) in the variance of the sample. As you can see the value is greater than 1 so it will increase the value you get for your sample mean. Essentially, this covers for the fact that you are unlikely to obtain the full population variation when you sample.
The relations depend on what measures. The sample mean is an unbiased estimate for the population mean, with maximum likelihood. The sample maximum is a lower bound for the population maximum.
It means you can take a measure of the variance of the sample and expect that result to be consistent for the entire population, and the sample is a valid representation for/of the population and does not influence that measure of the population.
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)
A parameter is a number describing something about a whole population. eg population mean or mode. A statistic is something that describes a sample (eg sample mean)and is used as an estimator for a population parameter. (because samples should represent populations!)