The sine of an angle is obtained from a right angle triangle. The other two angles are acute, or less than 90 degrees. The sin of the angle is the side opposite the angle divided by the hypotenuse.
Chat with our AI personalities
Sin or Sine is the ratio of the Opposite side Over The Hypoteneuse of any right angled triangle inverse sin or inverse sine ( they mean the same thing ) uses the same ratio to find an unknown angle and can be written as sin-1 so if you know two sides ( opposite and Hypoteneuse ) then you can work out the sin...then you can either use a calculator to determine the inverse ( or angle ) or you could look up the sin in a booklet of sin values and determine the angle Example : in the triangle ABC the line ab=4 ac = 5 and the angle abc =90 we could find the sin of the angle acb sinacb= opp/hyp = 4/5 = 0.8 to find sin-1 of 0.8 calcultor press 0.8 press inv button or on newer calculators the 2nd functon button then press the button marked sin the display should then display 53.1301....or 53 to 2 sig figures
with all the sides, you could use any, use SOH :( sin of angle = opposite / hypotonuse)assuming its a right angle triangle, then select either of the (non right angle) angles, divide the length of the side opposite this angle by the length of the hypotonuse ( longest side, opposite the right angle), then find the inverse SIN of this number on your calculator, this is the angle. Since total internal angles always = 180 degrees, and right angle = 90 degrees then final angle is calculated angle subtracted from 90 degrees.
If this is a homework assignment, please consider trying it yourself first, otherwise the value of the reinforcement to the lesson offered by the homework will be lost on you.If the sin of an angle is 0.92595, the angle is the inverse sin of 0.92595, which is 67.812 degrees, or 1.1835 radians.
tan u/2 = sin u/1+cos u
Using the Sine function Sin(x) = 0.5 Then x = Sin^(-1)0.5 x = 30 degrees. Sin^(-1) in the inverse function on you calculator. . It works for Sin , Cosine and Tangent of any angle.