PIERRE DE FERMAT' S LAST THEOREM.
CASE SPECIAL N=3 AND.GENERAL CASE N>2. .
THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2.
Z^3=/=X^3+Y^3 AND Z^N=/=X^N+Y^N.
SPECIAL CASE N=3.
WE HAVE
(X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2.
BECAUSE
X*Y>0=>2X^2*Y^2>0.
SO
(X^2+Y^2)^2=/=X^4+Y^4.
CASE 1. IF
Z^2=X^2+Y^2
SO
(Z^2)^2=(X^2+Y^2)^2
BECAUSE
(X^+Y^2)^2=/=X^4+Y^4.
SO
(Z^2)^2=/=X^4+Y^4.
SO
Z^4=/=X^4+Y^4.
CASE 2. IF
Z^4=X^4+Y^4
BECAUSE
X^4+Y^4.=/= (X^2+Y^2.)^2
SO
Z^4=/=(X^2+Y^2.)^2
SO
(Z^2)^2=/=(X^2+Y^2.)^2
SO
Z^2=/=X^2+Y^2.
(1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2.
SO
2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2.
SO
(Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3)
SO IF
(Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
=> (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4)
AND
SO IF
(Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4
=> (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
BECAUSE
(Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3.
SO
Z^3=/=X^3+Y^3.
Happy&Peace.
Trantancuong.
False
False
Fermat's Last Theorem states that an + bn = cn does not have non-zero integer solutions for n > 2. Various mathematicians have worked on Fermat's Last Theorem, proving it true for certain cases of n. In 1994, Andrew Wiles revised and corrected his 1993 proof of the theorem for all cases of n. The proof is very complex.
True
True. Axioms and postulates do not require proof to be used.
In a two-column proof, it is true that the left column states your reasons.
A Fermat Prime refers to a proof that the mathematician Fermat discovered. It refers to a integer that is subject to an equation and the predictable result. Below is a webpage that explains it with examples.
That answer Is absoulutley False
An indirect proof is another name for a proof by contradiction. This is where the original premise is assumed to be false and then attempted to be proven. Because this proof turns out to be false, the original premise is then true.
True
It is true.
It is true.