PIERRE DE FERMAT' S LAST THEOREM.
CASE SPECIAL N=3 .
THE CONDITIONS.Z,X,Y,N ARE THE INTEGERS . Z*X*Y*N>0.N>2.
Z^3=/=X^3+Y^3
WE HAVE
(X^2+Y^2)^2=X^4+Y^4+2X^2*Y^2.
BECAUSE
X*Y>0=>2X^2*Y^2>0.
SO
(X^2+Y^2)^2=/=X^4+Y^4.
CASE 1. IF
Z^2=X^2+Y^2
SO
(Z^2)^2=(X^2+Y^2)^2
BECAUSE
(X^+Y^2)^2=/=X^4+Y^4.
SO
(Z^2)^2=/=X^4+Y^4.
SO
Z^4=/=X^4+Y^4.
CASE 2. IF
Z^4=X^4+Y^4
BECAUSE
X^4+Y^4.=/= (X^2+Y^2.)^2
SO
Z^4=/=(X^2+Y^2.)^2
SO
(Z^2)^2=/=(X^2+Y^2.)^2
SO
Z^2=/=X^2+Y^2.
(1) AND (2)=> Z^4+Z^2=/=X^4+Y^4+X^2+Y^2.
SO
2Z^4+2Z^2=/=2X^4+2Y^4+2X^2+Y^2.
SO
(Z^4+Z^2+2Z^3+Z^4+Z^2-2Z^3)=/=(X^4+X^2+2X^3+X^4+X^2-2X^3)+)(Y^4+Y^2+2Y^3+Y^4+Y^2-2Y^3)
SO IF
(Z^4+Z^2+2Z^3)/4=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
=> (Z^4+Z^2-2Z^3)/4=/=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3/4)
AND
SO IF
(Z^4+Z^2-2Z^3)/4=(Z^4+Z^2-2Z^3)/4+(Z^4+Z^2-2Z^3)./4
=> (Z^4+Z^2+2Z^3)/4=/=(Z^4+Z^2+2Z^3)/4+(Z^4+Z^2+2Z^3)/4
BECAUSE
(Z^4+Z^2+2Z^3)/4 - (Z^4+Z^2-2Z^3)/4 =Z^3.
SO
Z^3=/=X^3+Y^3.
Happy&Peace.
Trantancuong.
He proved Fermat's Last Theorem. Actually he proved the Taniyama-Shimura-Weil conjecture and this proved the theorem.
Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.Yes, the famous Fermat's Last Theorem, a conjecture by Fermat, that an equation of the form an + bn = cn has no integer solution, for n > 2. This was conjectured by Fermat in 1637, but it was only proved in 1995.
This was not the last theorem that Fermat wrote. Rather, it was the last one to be proven/disproven.
QED, Fermat's Last Theorem.
Andrew Wiley, who solved Fermat's Last Theorem. Andrew Wiley, who solved Fermat's Last Theorem.
Fermat's last theorem says there does not exist three positive integers a, b, and c which can satisfy the equation an + bn = cn for any integer value of n greater than 2. (2 with be pythagoran triples so we don't include that) Fermat proved the case for n=4, but did not leave a general proof. The proof of this theorem came in 1995. Taylor and Wiles proved it but the math they used was not even known when Fermat was alive so he could not have done a similar proof.
It was 1647 not 1847 and by Fermat himself.
1637
Andrew Wiles solved/proved Fermats Last Theorem. The theorem states Xn + Yn = Zn , where n represents 3, 4, 5,......... there is no solution.
He proved Fermat's last "theorem" which had been an open question for centuries and was one of the most famous open problems in all of mathematics.
The basis for Fermat's Last Theorem was Pythagoras's theorem. The latter showed that in any right angled triangle, the lengths of the sides satisfies a^2 + b^2 = c^2. In particular, that there are integer solutions to the equation: such as {3, 4, 5} or {5, 12, 13}. Fermat's theorem proved that there were no non-trivial solutions for a^n + b^n = c^n for any positive integers a, b, c and n where n > 2
Neither. A theorem is a proven mathematical statement. This says nothing about how easily it can be proven. e.g. the Pythagorean Theorem is easily proven, but Fermat's Last Theorem is extremely difficult to prove.