Many people use steel and stainless steel, perhaps stainless steel welding wire to make cheap resistance heating elements.
You don't specify diameter. I am assuming it is the same. However, the larger the wire the lower the resistance. Temperature affects resistance. The hotter the wire, the higher the resistance. You also don't specify the layout of the wire. For example you could make a coil or choke with one wire.
R = (density)(Length)/(Area) Unit of resistance is Ohms.
The answer depends on the material and thickness of the wire.
The answer depends on the cross sectional area of the wire. This is not given.
This is called ductility.
You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).
A wire that is thicker than another wire of the same material has less resistance
As the wire becomes longer, its resistance increases because there is more material for the electrons to travel through. On the other hand, as the wire becomes thicker, its resistance decreases because there is more space for the electrons to flow, reducing the collisions with the wire material and therefore lowering the resistance.
It's dependent on the wire's composition. That is, what material it is made of. <<>> The electrical resistance in a wire depends on the wire's length and cross sectional area.
The three factors that affect the resistance of a copper wire are the length of the wire (longer wire has higher resistance), the cross-sectional area of the wire (thinner wire has higher resistance), and the temperature of the wire (higher temperature increases resistance).
A wire creates resistance due to collisions between electrons and atoms in the wire's material. These collisions impede the flow of electrons, causing resistance to the current passing through the wire.
The resistance of a wire depends on three main factors: its length, its cross-sectional area, and the material it is made of. Generally, longer wires have higher resistance while thicker wires have lower resistance. The material's resistivity also plays a significant role in determining the wire's resistance.
The resistance of a wire is determined by the following formula. R = (rho)L/A, where the greek letter rho (it looks like a p) is a value assigned to a material based on how resistive it is by nature, L is the length of the wire, and A is the cross-sectional area (AKA how thick the wire is). Increase the length, or change the material to something with higher restistivity. Hope this helps!
A thin wire will have more resistance than a thicker wire made of the same material because resistance is inversely proportional to cross-sectional area. Thinner wires have a smaller cross-sectional area, leading to higher resistance.
A long piece of wire will have more resistance in it than a shorter one of the same material.
The three main factors that affect the resistance in a wire are the material of the wire (different materials have different resistivities), the length of the wire (longer wires have higher resistance), and the cross-sectional area of the wire (thicker wires have lower resistance).
The four main factors that influence resistance in a wire are the material of the wire, the length of the wire, the cross-sectional area of the wire, and the temperature of the wire. These factors determine how easily electrons can flow through the wire and affect its overall resistance.