answersLogoWhite

0

R = (density)(Length)/(Area)

Unit of resistance is Ohms.

User Avatar

Wiki User

16y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Suppose you have two wires of equal length made from the same material how is it possible for the wires to have differents resistances?

You don't specify diameter. I am assuming it is the same. However, the larger the wire the lower the resistance. Temperature affects resistance. The hotter the wire, the higher the resistance. You also don't specify the layout of the wire. For example you could make a coil or choke with one wire.


is it construct two wires of the same length one of copper and one of iron that would have the same resistance at the same temperature?

Yes, it is possible to construct two wires of the same length, one of copper and one of iron, that have the same resistance at the same temperature. The resistance of a wire is determined by its resistivity, length, and cross-sectional area, as given by the formula ( R = \frac{\rho L}{A} ). Since copper has a lower resistivity than iron, the copper wire would need a larger cross-sectional area than the iron wire to achieve the same resistance.


How does resistivity vary if length and area are doubled?

if length is doubled then resistivity increases&when area is doubled resistivity decreases.


What is the formula to calculate length of the wire?

There is no formula to calculate the length of a wire. The length of a wire is determined by the distance from the power source to where the load is situated.


A wire of uniform cross section and length L has a resistance of 16ohm It is cut into four equal parts Each part is stretched uniformly to length L and all the four stretched parts are connected in?

When i will be a pro will help

Related Questions

If the length of a copper wire is reduced by half then the resistance of the wire will be?

The resistance of a wire is directly proportional to its length, so if the length is reduced by half, the resistance will also be reduced by half.


How does the resistance of a wire vary with its length?

The resistance of a wire is directly proportional to its length. This means that as the length of the wire increases, the resistance also increases. This relationship is described by the formula R = ρ * (L/A), where R is resistance, ρ is the resistivity of the material, L is the length of the wire, and A is its cross-sectional area.


How Does the length of the wire affect its resistance?

As the length of the wire increases, the resistance also increases. This is because a longer wire offers more opposition to the flow of electrical current compared to a shorter wire. Resistance is directly proportional to length, so doubling the length of the wire will double its resistance.


How does the resistance of a wire vary with its lenght?

The resistance of a wire increases as its length increases. This is because as the length of the wire increases, there are more atoms for the electrons to collide with as they pass through the wire, leading to more opposition to the flow of electric current and a higher resistance.


How do you calculate a cross-sectional area When all you know is resistance resistivity and length?

I think the equation you are looking for is Resistance (ohms) = Resistivity * Length / Area or R=p*L/A. This is the resistance of a circular wire with cross-section of A, length of L, and material with resistivity p. So to get area: Area = Resistivity * Length / Resistance.


A 4 ohm resistance wire is doubled on it calculate the new resistance of the wire?

The resistance of a wire is directly proportional to its length, so doubling the length will also double the resistance. Therefore, doubling the 4 ohm resistance wire will result in a new resistance of 8 ohms.


What would not reduce resistance in the copper wire?

Increasing the length of the wire will not reduce resistance in a copper wire. In fact, resistance is directly proportional to the length of the wire according to the formula R = ρ * (L/A), where R is resistance, ρ is resistivity, L is length, and A is cross-sectional area.


How does length affect resistance of a wire?

In general, the longer the wire, the greater the resistance. This is because a longer wire offers more resistance to the flow of electrons compared to a shorter wire. The resistance of a wire is directly proportional to its length.


What happens to the current of the wire when the length increases?

resistance is directly proportional to wire length and inversely proportional to wire cross-sectional area. In other words, If the wire length is doubled, the resistance is doubled too. If the wire diameter is doubled, the resistance will reduce to 1/4 of the original resistance.


What is the Change in resistance of wire when its length is double?

Assuming the wire follows Ohm's Law, the resistance of a wire is directly proportional to its length therefore doubling the length will double the resistance of the wire. However when the length of the wire is doubled, its cross-sectional area is halved. ( I'm assuming the volume of the wire remains constant and of course that the wire is a cylinder.) As resistance is inversely proportional to the cross-sectional area, halving the area leads to doubling the resistance. The combined effect of doubling the length and halving the cross-sectional area is that the original resistance of the wire has been quadrupled.


What length of a copper wire 0.800-melimmeter in diameter has a resistance of 100 ohm?

Work it out for yourself. The equation you will need to use is: resistance = resistivity x (cross-sectional area / length) Manipulate the equation to make 'length' the subject, and use 17.25 x 10-9 ohm metres as the value of resistivity.


Three ways which resistance of a wire can be increased?

You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).You can increase the resistance in the wire, by doing any of the following:Increase the length of the wire.Reduce the wire's cross-section.Change to a material that has a greater resistivity (specific resistance).