Numbers cannot be rational and irrational at the same time.
No, they are disjoint sets.
None. A rational number is a number that can be written as the quotient of two integers where the divisor is not zero. An irrational number is a real number that cannot be written as the quotient of two integers where the divisor is not zero. Any given real number either can or cannot be written as the quotient of two integers. If it can, it is rational. If it cannot, it is irrational. You can't be both at the same time. The square root of -1 is not a real number and it cannot be written as the quotient of two integers, so it is neither rational nor irrational.
Integers and fractions that have integers in the numerator and denominator are rational. A number can't be rational and irrational at the same time - irrational means "not rational".
No number can be rational and irrational at the same time. 3.14 is the ratio of 314:100 and so is rational. HOWEVER, 3.14 is also a common approximation for pi, which is an irrational number. All irrational numbers have infinite, non-recurring decimals and so are often approximated by rationals.
A whole number k can be written in the form k/1 where k and 1 are both integers. It can, thus, be expressed in the form of a ratio and so is rational. Since it is rational it cannot be irrational. Simple!
Every time. No exceptions.
Yes. Any time you multiply a rational number by an irrational number, you get an irrational number - unless the rational number is zero.
313-428-2774-aint no body got time for that lady
It can't be both at the same time. Irrational means "not rational".
No they cant because that would be contradicting each other ( The numbers wont end and don't have a pattern but rational is the complete opposite)
No; the only condition for qualyfing as an irrational number is that the same pattern of digits doesn't repeat over and over again, as it does with a rational number. For example, 8/7 is a rational number; the decimal expansion is 1.142857 142857 142857 ... As you see, the same pattern of digits repeats over and over. The number may start with different digits, but if after a while the same pattern repeats again and again, the number is rational.The following number is irrational: 0.101001000100001000001 ... The pattern doesn't repeat, because a zero is added every time. And, in this example, the decimal expansion doesn't contain any digits other than 0 and 1.