No.
6,1,8
There are 199 palindromic numbers between 0 and 1000. These include single-digit numbers (0-9), which total 10, and two-digit numbers (11, 22, ..., 99), which add up to 9. Additionally, there are 90 three-digit palindromic numbers, ranging from 101 to 999, that follow the format aba (where a and b are digits). Thus, the total is 10 (single-digit) + 9 (two-digit) + 90 (three-digit) = 109 palindromic numbers.
Palindromic numbers between 1 and 1000 are numbers that read the same forward and backward. The palindromic numbers in this range include single-digit numbers (1 to 9), two-digit numbers like 11, 22, 33, up to 99, and three-digit numbers such as 101, 111, 121, up to 999. Specifically, the three-digit palindromes follow the pattern ABA, where A and B are digits. In total, there are 199 palindromic numbers between 1 and 1000.
There are more 12-digit palindromic numbers than 11-digit palindromic numbers. This is because the number of possible 12-digit palindromic numbers is greater than the number of possible 11-digit palindromic numbers. In general, the number of palindromic numbers of length n is 9 * 10^((n-1)/2), so for 11-digit palindromic numbers, there are 9 * 10^5 = 900,000 possibilities, while for 12-digit palindromic numbers, there are 9 * 10^6 = 9,000,000 possibilities.
There are 900000 of them.
90
9
11
11
there are 10 palindromic numbers between 9000 and 10000 9009,9119,9229,9339,9449,9559,9669,9779,9889,9999!!!
Aside from single digit primes, the first ten palindromic prime numbers are: 11 101 131 151 181 191 313 353 373 383 727
Oh, dude, there are 90 three-digit palindromic numbers. You see, a three-digit palindrome has the form "ABA," where A and B can be any digit from 1 to 9. So, you just multiply the possibilities for A and B, which is 9 choices each, and voilà, you get 9 x 10 = 90. Easy peasy, lemon squeezy!