what graphs
I'm unable to view or analyze graphs directly. However, if you describe the key features of the graphs, such as the direction of the lines, shaded regions, or specific points, I can help you determine the appropriate inequality that suits them.
The following is the answer.
The graphs of a system of two equations in two variables can determine the solutions to the system. If the graphs intersect at a single point, that point represents the unique solution. If the graphs are parallel and do not intersect, the system has no solution (inconsistent). If the graphs coincide, there are infinitely many solutions (dependent).
True
butts
to make patterns easier to determine
To determine a solution to an inequality, you need to specify the inequality itself. Solutions vary depending on the inequality's form, such as linear (e.g., (x > 3)) or quadratic (e.g., (x^2 < 4)). Once the inequality is provided, you can identify specific numbers that satisfy it. Please provide the inequality for a precise solution.
Choose any point and substitute its coordinate into the inequality. If the inequality remains TRUE then the region containing the inequality is the one that you want. If it is false, then you want the region on the other side of the line. You can choose any point in the plane and substitute its coordinates into the inequality. The origin is usually the simplest.
To determine if 2 is a solution to the inequality (x), we need to clarify the specific inequality being referenced. If we're considering a simple inequality such as (x > 1), then 2 is indeed a solution because it satisfies the condition. However, if the inequality is (x < 1), then 2 would not be a solution. Please provide the complete inequality for an accurate assessment.
To determine if an ordered pair is a solution to an inequality, you need to substitute the values of the ordered pair into the inequality and check if the statement holds true. If the left side of the inequality evaluates to a value that satisfies the inequality when compared to the right side, then the ordered pair is a solution. If not, it is not a solution. Please provide the specific ordered pair and the inequality for a definitive answer.
To determine whether to use a solid or dotted line for a given inequality, check if the inequality includes equal to (≥ or ≤) or not (>) or (<). If it includes equal to, use a solid line; if not, use a dotted line. For the solution area, if the inequality is greater than (>) or greater than or equal to (≥), the solution lies above the line; for less than (<) or less than or equal to (≤), it lies below the line.
To determine the inequality that represents a graph, you need to analyze its features, such as the shaded region and the boundary line. If the boundary line is solid, the inequality includes "≤" or "≥," while a dashed line indicates "<" or ">". The shaded region shows where the values satisfy the inequality. By identifying the slope and y-intercept of the line, you can formulate the correct inequality.