answersLogoWhite

0

The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.

In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.

User Avatar

Wiki User

15y ago

What else can I help you with?

Continue Learning about Math & Arithmetic

Numerical method for solving can eqution bisection method?

A root-finding algorithm is a numerical method, or algorithm, for finding a value. Finding a root of f(x) − g(x) = 0 is the same as solving the equation f(x) = g(x).


What are the applications of numerical method?

Numerical methods are used to find solutions to problems when purely analytical methods fail.


How do you solve a nonlinear equation?

To solve a nonlinear equation, you can use various methods depending on the equation's characteristics. Common techniques include graphing, where you visualize the function to identify intersection points with the x-axis; numerical methods like the Newton-Raphson method or bisection method for finding approximate solutions; and algebraic methods such as factoring or substitution if applicable. In cases where explicit solutions are difficult to find, software tools or calculators can also be employed for numerical solutions.


What is indirect method in numerical analysis?

The indirect method in numerical analysis refers to techniques that solve mathematical problems by approximating solutions through iterative processes, rather than directly calculating them. This approach is often used for solving equations, optimization problems, or numerical integration, where an explicit formula may not be available. Examples include methods like Newton's method or the bisection method for root-finding. These methods typically involve making an initial guess and refining that guess through successive iterations until a desired level of accuracy is achieved.


How do you know which Numerical Method to use for which problem?

To know which numerical method to use for a problem one first needs to understand the various methods and evaluate the problems.

Related Questions

Numerical method for solving can eqution bisection method?

A root-finding algorithm is a numerical method, or algorithm, for finding a value. Finding a root of f(x) − g(x) = 0 is the same as solving the equation f(x) = g(x).


What are the applications of numerical method?

Numerical methods are used to find solutions to problems when purely analytical methods fail.


How do you solve a nonlinear equation?

To solve a nonlinear equation, you can use various methods depending on the equation's characteristics. Common techniques include graphing, where you visualize the function to identify intersection points with the x-axis; numerical methods like the Newton-Raphson method or bisection method for finding approximate solutions; and algebraic methods such as factoring or substitution if applicable. In cases where explicit solutions are difficult to find, software tools or calculators can also be employed for numerical solutions.


What is indirect method in numerical analysis?

The indirect method in numerical analysis refers to techniques that solve mathematical problems by approximating solutions through iterative processes, rather than directly calculating them. This approach is often used for solving equations, optimization problems, or numerical integration, where an explicit formula may not be available. Examples include methods like Newton's method or the bisection method for root-finding. These methods typically involve making an initial guess and refining that guess through successive iterations until a desired level of accuracy is achieved.


How do you know which Numerical Method to use for which problem?

To know which numerical method to use for a problem one first needs to understand the various methods and evaluate the problems.


Can you say that an iterative methods to solve a non-linear equation is actually a numerical method?

Yes, you can. Any iterative method/algorithm that is used to solve a continuous mathematics problem can also be called a numerical method/algorithm.


How can you find the minimum of a function?

There are to classes of methods to find the minimum of a function: analytical and numerical. Analytical methods are precise but cannot be applied always. For example, we can find the minimum of a function by setting its first derivative to zero and solve for the variable and then check the second derivative (must be positive). Numerical methods involve the application of steps repeatedly until an acceptable estimate of the solution is found. Numerical methods include Newton method, steepest descent method, golden section method, Simplex method, to name just a few.


What is advantages of bisection method?

In the absence of other information, it is the most efficient.


What is the advantages of using bisection method?

1. it is always convergent. 2. it is easy


What are the applications of runge kutta method?

The Runge-Kutta method is one of several numerical methods of solving differential equations. Some systems motion or process may be governed by differential equations which are difficult to impossible to solve with emperical methods. This is where numerical methods allow us to predict the motion, without having to solve the actual equation.


What is the rate of convergence for the bisection method?

The rate of convergance for the bisection method is the same as it is for every other iteration method, please see the related question for more info. The actual specific 'rate' depends entirely on what your iteration equation is and will vary from problem to problem. As for the order of convergance for the bisection method, if I remember correctly it has linear convergence i.e. the convergence is of order 1. Anyway, please see the related question.


What is the Real root of 1-0.6x divided by x using bisection method?

The root of f(x)=(1-0.6x)/x is 1.6666... To see how the bisection method is used please see the related question below (link).