1. it is always convergent.
2. it is easy
In the absence of other information, it is the most efficient.
The root of f(x)=(1-0.6x)/x is 1.6666... To see how the bisection method is used please see the related question below (link).
The rate of convergance for the bisection method is the same as it is for every other iteration method, please see the related question for more info. The actual specific 'rate' depends entirely on what your iteration equation is and will vary from problem to problem. As for the order of convergance for the bisection method, if I remember correctly it has linear convergence i.e. the convergence is of order 1. Anyway, please see the related question.
The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.
the advantages of deductive method
In the absence of other information, it is the most efficient.
The root of f(x)=(1-0.6x)/x is 1.6666... To see how the bisection method is used please see the related question below (link).
The advantages of using the scientific method when studing environmental issue?
positive root of sinx-x/2=0 using bisection method correct to one decimal place
The rate of convergance for the bisection method is the same as it is for every other iteration method, please see the related question for more info. The actual specific 'rate' depends entirely on what your iteration equation is and will vary from problem to problem. As for the order of convergance for the bisection method, if I remember correctly it has linear convergence i.e. the convergence is of order 1. Anyway, please see the related question.
One of the main advantages of using the polygon method is speed. The main disadvantage to this method is the fact that it cannot adequately represent curved items.
I'm not familiar with the "bisection method" to find the roots of 2x2-5x+1 = 0 but by completing the square or using the quadratic equation formula you'll find that the solution is: x = (5 + or - the square root of 17) over 4 Hope that helps.
The main disadvantage of the bisection method for finding the root of an equation is that, compared to methods like the Newton-Raphson method and the Secant method, it requires a lot of work and a lot of iterations to get an answer with very small error, whilst a quarter of the same amount of work on the N-R method would give an answer with an error just as small.In other words compared to other methods, the bisection method takes a long time to get to a decent answer and this is it's biggest disadvantage.
Please see the link for a code with an explanation.
The bisection method is simpler to implement and guarantees convergence to a root if one exists within the initial interval, but it can be slower as it always halves the interval. In contrast, linear interpolation converges faster but does not guarantee convergence, and it might fail if the function is not well approximated by a linear model in the interval.
In bisection method an average of two independent variables is taken as next approximation to the solution while in false position method a line that passes through two points obtained by pair of dependent and independent variables is found and where it intersects abissica is takent as next approximation..
there are three variable are to find but in newton only one variable is taken at a time of a single iteration