answersLogoWhite

0

Do all matrices have determinant

User Avatar

Wiki User

โˆ™ 2012-06-23 22:56:17

Best Answer

Only square matrices have a determinant

User Avatar

Wiki User

โˆ™ 2012-06-23 22:56:17
This answer is:
User Avatar
Study guides

Algebra

20 cards

A polynomial of degree zero is a constant term

The grouping method of factoring can still be used when only some of the terms share a common factor A True B False

The sum or difference of p and q is the of the x-term in the trinomial

A number a power of a variable or a product of the two is a monomial while a polynomial is the of monomials

โžก๏ธ
See all cards
3.79
โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…โ˜†โ˜…
1456 Reviews

Add your answer:

Earn +20 pts
Q: Do all matrices have determinant
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

What is the determinant rank of the determinant of 123456 its a 2 x 3 matrix?

A determinant is defined only for square matrices, so a 2x3 matrix does not have a determinant.Determinants are defined only for square matrices, so a 2x3 matrix does not have a determinant.


What is the determinant of a 2x1 matrix?

The determinant is only defined for square matrices.


Is the set of all 2x2 invertible matrices a subspace of all 2x2 matrices?

I assume since you're asking if 2x2 invertible matrices are a "subspace" that you are considering the set of all 2x2 matrices as a vector space (which it certainly is). In order for the set of 2x2 invertible matrices to be a subspace of the set of all 2x2 matrices, it must be closed under addition and scalar multiplication. A 2x2 matrix is invertible if and only if its determinant is nonzero. When multiplied by a scalar (let's call it c), the determinant of a 2x2 matrix will be multiplied by c^2 since the determinant is linear in each row (two rows -> two factors of c). If the determinant was nonzero to begin with c^2 times the determinant will be nonzero, so an invertible matrix multiplied by a scalar will remain invertible. Therefore the set of all 2x2 invertible matrices is closed under scalar multiplication. However, this set is not closed under addition. Consider the matrices {[1 0], [0 1]} and {[-1 0], [0 -1]}. Both are invertible (in this case, they are both their own inverses). However, their sum is {[0 0], [0 0]}, which is not invertible because its determinant is 0. In conclusion, the set of invertible 2x2 matrices is not a subspace of the set of all 2x2 matrices because it is not closed under addition.


Why only square matrix have determinant?

The square matrix have determinant because they have equal numbers of rows and columns. <<>> Determinants are not defined for non-square matrices because there are no applications of non-square matrices that require determinants to be used.


How do you show a matrix is invertible?

For small matrices the simplest way is to show that its determinant is not zero.


What is diff between matrices and determinants?

actually MATRICES is the plural of matrix which means the array of numbers in groups and columns in a rectangular table... and determinant is used to calculate the magnitude of a matrix....


How can you solve if the determinant of 3 by 3 matrix is 2?

It isn't clear what you want to solve for. If you want to find the matrix, there is not a unique solution - there are infinitely many matrices with the same determinant.


Is it possible to solve for the determinant of a 3 x 4 matrix?

No. Determinants are only defined for square matrices.No. Determinants are only defined for square matrices.


What does determinant mean in math?

That's a special calculation done on square matrices - for example, on a 2 x 2 matrix, or on a 3 x 3 matrix. For details, see the Wikipedia article on "Determinant".


What does S R followed by a number mean?

If you mean what does something like SL(3, R) mean, it is the group of all 3X3 matrices with determinant 1, with real entries, under matrix multiplication.


What is the commutator subgroup of general linear group of dimension n?

If R is a commutative ring with unit, then the commutator subgroup of GLn(R) is SLn(R), the special linear group, which consists of all matrices in GLn(R) with determinant 1.


Determinant of adjoint a is given find determinant of a?

relationship between determinant and adjoint

People also asked