answersLogoWhite

0


Best Answer

No. Determinants are only defined for square matrices.

No. Determinants are only defined for square matrices.

User Avatar

Wiki User

9y ago
This answer is:
User Avatar
More answers
User Avatar

Wiki User

9y ago

No. Determinants are only defined for square matrices.

This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is it possible to solve for the determinant of a 3 x 4 matrix?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Related questions

How can you solve if the determinant of 3 by 3 matrix is 2?

It isn't clear what you want to solve for. If you want to find the matrix, there is not a unique solution - there are infinitely many matrices with the same determinant.


What is the determinant rank of the determinant of 123456 its a 2 x 3 matrix?

A determinant is defined only for square matrices, so a 2x3 matrix does not have a determinant.Determinants are defined only for square matrices, so a 2x3 matrix does not have a determinant.


How do you find the variable in this matrix 3 -2 5 a ...the determinant is 7?

If it a 2x2 matrix, the determinant is 3*a - (-2)*5 = 3a + 10 = 7 So 3a = -3 so a = -1


What is the formula for the determinant of a 3 x 3 matrix?

If the matrix is { a1 b1 c1} {a2 b2 c2} {a3 b3 c3} then the determinant is a1b2c3 + b1c2a3 + c1a2b3 - (c1b2a3 + a1c2b3 + b1a2c3)


What does determinant mean in math?

That's a special calculation done on square matrices - for example, on a 2 x 2 matrix, or on a 3 x 3 matrix. For details, see the Wikipedia article on "Determinant".


Find the determinant of 1 a AA AA 1 a a AA 1?

Assuming that the terms, a and AA, are commutative, It is 1 + a^3 + (AA)^3 - 3aAA


How can you solve for the inverse of a 3 by 3 matrix?

Gauss Elimination


Can a 3 by 3 matrix equal zero?

First we need to ask what you mean by a matrix equalling a number? A matrix is a rectangular array of numbers all of which might be zero and this is called the zero matrix. We can take the determinant of a square matrix such as a 3x3 and this may be zero even without the entries being zero.


Why does the rule of sarrus work only for a 3 by 3 matrix?

In theory, a 2x2 determinant requires the evaluation of 2 products, a 3x3 determinant requires 6 products, a 4x4 determinant requires 24 products (note: that is the factorial function). The Rule of Sarrus is just a convenient memory aid for this specific case.


How do you find eigenvalues of a 3 by 3 matrix?

Call your matrix A, the eigenvalues are defined as the numbers e for which a nonzero vector v exists such that Av = ev. This is equivalent to requiring (A-eI)v=0 to have a non zero solution v, where I is the identity matrix of the same dimensions as A. A matrix A-eI with this property is called singular and has a zero determinant. The determinant of A-eI is a polynomial in e, which has the eigenvalues of A as roots. Often setting this polynomial to zero and solving for e is the easiest way to compute the eigenvalues of A.


Is it possible to multiply a 2 X 2 matrix and a 2 X 3 matrix?

Yes it is possible. The resulting matrix would be of the 2x3 order.


What is the difference between matrices and determinants?

Both matrix and determinants are the part of business mathematics. Both are useful for solving business problem. Both are helpful for calculation of each other. For calculation of inverse of matrix, we need to calculate the determinant. For calculating the value of 3X3 matrix or more matrix, we need to divide determinants in sub-matrix. but there are many differences between matrix and determinants which we can explain in following points. 1. Matrix is the set of numbers which are covered by two brackets. Determinants is also set of numbers but it is covered by two bars. 2. It is not necessary that number of rows will be equal to the number of columns in matrix. But it is necessary that number of rows will be equal to the number of columns in determinant. 3. Matrix can be used for adding, subtracting and multiplying the coefficients. Determinant can be used for calculating the value of x, y and z with Cramer's Rule. By Er. Hafijullah