Best Answer

No, since the equation could be y = x3 (or something similar) which will have a point of inflection at (0,0), meaning there is no relative maximum/minimum, as the graph doesn't double back on itself

For those that are unfamiliar with a point of inflection


User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Does every graph of a cubic function have relative maximum and minimum points?
Write your answer...
Still have questions?
magnify glass
Related questions

How do you find the minimum and maximum points of a function?

Set the first derivative of the function equal to zero, and solve for the variable.

How do you know if a point is a maximum or a minimum?

Usually at the minimum or maximum of a function, one of the following conditions arises:The derivative is zero.The derivative is undefined.The point is at the end-points of the domain that is being considered (or of the naturally-defined domain, for example, zero for the square root).This will give you "candidate points"; to find out whether each of these candidate points actually is a maximum or a minimum, additional analysis is required. For example, if the second derivative is positive, you have a minimum, if the second derivative is negative, you have a maximum - but if it is zero, it may be a maximum, a minimum, or neither.

How do you find minimum and maximum value of calculus?

In Calculus, to find the maximum and minimum value, you first take the derivative of the function then find the zeroes or the roots of it. Once you have the roots, you can just simply plug in the x value to the original function where y is the maximum or minimum value. To know if its a maximum or minimum value, simply do your number line to check. the x and y are now your max/min points/ coordinates.

How do you determine the relative minimum and relative maximum values of functions and the intervals on which functions are decreasing or increasing?

You take the derivative of the function. The derivative is another function that tells you the slope of the original function at any point. (If you don't know about derivatives already, you can learn the details on how to calculate in a calculus textbook. Or read the Wikipedia article for a brief introduction.) Once you have the derivative, you solve it for zero (derivative = 0). Any local maximum or minimum either has a derivative of zero, has no defined derivative, or is a border point (on the border of the interval you are considering). Now, as to the intervals where the function increase or decreases: Between any such maximum or minimum points, you take any random point and check whether the derivative is positive or negative. If it is positive, the function is increasing.

How can you find the extremums in a function?

The general procedure is to find the function's derivative, and then solve for (derivative of the function) = 0. Each of these solutions may be a local maximum or minimum - or none. Further analysis is required. A local maximum or minimum may also occur at points where the derivative is undefined, as well as at the function's endpoints (assuming it is only defined for a certain range, for example, from 0 to 10).

How many points get taken off your credit report when credit is pulled?

Minimum 3 points - maximum 12 points.

What is the minimum number of points required to mark all maximum minimum and zeros in a period of a sinusoid?

One period of a sinusoid with no constant component has 1 maximum, 1 minimum,and 1 zero crossing, and 2 zero end-points.Total = 5 points.

How many line segments does 9 points have?

A minimum of 1, a maximum of 36.

What is the definition of the Minimum of a function in Alegbra?

A global minimum is a point where the function has its lowest value - nowhere else does the function have a lower value. A local minimum is a point where the function has its lowest value for a certain surrounding - no nearby points have a lower value.

What is an antinode?

in a wave there are some points which vibrate with maximum amplitude these points are called antinodes.pressure at\on these points is minimum hence they are also called pressure nodes.

What is the least and maximum number of lines obtainable with 7 points?

depends on the position of the points if points are collinear, we have just only one line, the minimum number. If points are in different position (if any of the two points are not collinear) we have 21 lines (7C2), the maximum number of lines.

What is a data point that is located away from most other points?

A maximum or a minimum - collectively known as an extremum.