answersLogoWhite

0

this question on pic

User Avatar

math

Lvl 2
2y ago

What else can I help you with?

Related Questions

To find inverse Fourier transform using convolution?

The inverse Fourier transform can be computed using convolution by utilizing the property that the inverse transform of a product of two Fourier transforms corresponds to the convolution of their respective time-domain functions. Specifically, if ( F(\omega) ) is the Fourier transform of ( f(t) ), then the inverse Fourier transform is given by ( f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} F(\omega) e^{i\omega t} d\omega ). This integral can be interpreted as a convolution with the Dirac delta function, effectively allowing for the reconstruction of the original function from its frequency components. Thus, the convolution theorem links multiplication in the frequency domain to convolution in the time domain, facilitating the computation of the inverse transform.


State and prove convolution theorem for fourier transform?

Convolution TheoremsThe convolution theorem states that convolution in time domain corresponds to multiplication in frequency domain and vice versa:Proof of (a):Proof of (b):


What is parseval theorem in fourier series?

Parseval's theorem in Fourier series states that the total energy of a periodic function, represented by its Fourier series, is equal to the sum of the squares of its Fourier coefficients. Mathematically, for a function ( f(t) ) with period ( T ), the theorem expresses that the integral of the square of the function over one period is equal to the sum of the squares of the coefficients in its Fourier series representation. This theorem highlights the relationship between the time domain and frequency domain representations of the function, ensuring that energy is conserved across these domains.


Difference between fourier series and z-transform?

Laplace = analogue signal Fourier = digital signal Notes on comparisons between Fourier and Laplace transforms: The Laplace transform of a function is just like the Fourier transform of the same function, except for two things. The term in the exponential of a Laplace transform is a complex number instead of just an imaginary number and the lower limit of integration doesn't need to start at -∞. The exponential factor has the effect of forcing the signals to converge. That is why the Laplace transform can be applied to a broader class of signals than the Fourier transform, including exponentially growing signals. In a Fourier transform, both the signal in time domain and its spectrum in frequency domain are a one-dimensional, complex function. However, the Laplace transform of the 1D signal is a complex function defined over a two-dimensional complex plane, called the s-plane, spanned by two variables, one for the horizontal real axis and one for the vertical imaginary axis. If this 2D function is evaluated along the imaginary axis, the Laplace transform simply becomes the Fourier transform.


How can you compute the inverse of a matrix by cayley hamilton theorem?

Ask Haniph Latchman.


Is the Nyquist theorem true for optical fiber or only for copper wire?

The Nyquist theorem is a property of mathematics and has nothing to do with technology. It says that if you have a function whose Fourier spectrum does not contain any sines or cosines above f, then by sampling the function at a frequency of 2fyou capture all the information there is. Thus, the Nyquist theorem is true for all media.


What is the Syllabus of engg mathematics for Be?

MA1201 MATHEMATICS III 3 1 0 100 AIM The course aims to develop the skills of the students in the areas of boundary value problems and transform techniques. This will be necessary for their effective studies in a large number of engineering subjects like heat conduction, communication systems, electro-optics and electromagnetic theory. The course will also serve as a prerequisite for post graduate and specialized studies and research. OBJECTIVES At the end of the course the students would • Be capable of mathematically formulating certain practical problems in terms of partial differential equations, solve them and physically interpret the results. • Have gained a well founded knowledge of Fourier series, their different possible forms and the frequently needed practical harmonic analysis that an engineer may have to make from discrete data. • Have obtained capacity to formulate and identify certain boundary value problems encountered in engineering practices, decide on applicability of the Fourier series method of solution, solve them and interpret the results. • Have grasped the concept of expression of a function, under certain conditions, as a double integral leading to identification of transform pair, and specialization on Fourier transform pair, their properties, the possible special cases with attention to their applications. • Have learnt the basics of Z - transform in its applicability to discretely varying functions, gained the skill to formulate certain problems in terms of difference equations and solve them using the Z - transform technique bringing out the elegance of the procedure involved. UNIT I PARTIAL DIFFERENTIAL EQUATIONS 9 + 3 Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solution of standard types of first order partial differential equations - Lagrange's linear equation - Linear partial differential equations of second and higher order with constant coefficients. UNIT II FOURIER SERIES 9 + 3 Dirichlet's conditions - General Fourier series - Odd and even functions - Half range sine series - Half range cosine series - Complex form of Fourier Series - Parseval's identify - Harmonic Analysis. UNIT III BOUNDARY VALUE PROBLEMS 9 + 3 Classification of second order quasi linear partial differential equations - Solutions of one dimensional wave equation - One dimensional heat equation - Steady state solution of two-dimensional heat equation (Insulated edges excluded) - Fourier series solutions in Cartesian coordinates. UNIT IV FOURIER TRANSFORM 9 + 3 Fourier integral theorem (without proof) - Fourier transform pair - Sine and Cosine transforms - Properties - Transforms of simple functions - Convolution theorem - Parseval's identity. UNIT V Z -TRANSFORM AND DIFFERENCE EQUATIONS 9 + 3 Z-transform - Elementary properties - Inverse Z - transform - Convolution theorem -Formation of difference equations - Solution of difference equations using Z - transform. TUTORIAL 15 TOTAL : 60 TEXT BOOKS 1. Grewal, B.S., "Higher Engineering Mathematics", Thirty Sixth Edition, Khanna Publishers, Delhi, 2001. 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics Volume III", S. Chand & Company ltd., New Delhi, 1996. 3. Wylie C. Ray and Barrett Louis, C., "Advanced Engineering Mathematics", Sixth Edition, McGraw-Hill, Inc., New York, 1995. REFERENCES 1. Andrews, L.A., and Shivamoggi B.K., "Integral Transforms for Engineers and Applied Mathematicians", Macmillen , New York ,1988. 2. Narayanan, S., Manicavachagom Pillay, T.K. and Ramaniah, G., "Advanced Mathematics for Engineering Students", Volumes II and III, S. Viswanathan (Printers and Publishers) Pvt. Ltd. Chennai, 2002. 3. Churchill, R.V. and Brown, J.W., "Fourier Series and Boundary Value Problems", Fourth Edition, McGraw-Hill Book Co., Singapore, 1987.


Program to demostrate the convolution theorm in matlab?

To demonstrate the convolution theorem in MATLAB, you can use the following example code. First, define two signals, such as x = [1, 2, 3] and h = [0.5, 1]. Compute their convolution using the conv function, and then verify the theorem by transforming both signals into the frequency domain using the Fast Fourier Transform (FFT), multiplying the results, and then applying the inverse FFT. Here's a simple implementation: x = [1, 2, 3]; h = [0.5, 1]; conv_result = conv(x, h); % Convolution in time domain % Frequency domain approach X = fft(x); H = fft(h, length(x) + length(h) - 1); % Zero-padding for proper multiplication Y = X .* H; % Multiply in frequency domain freq_conv_result = ifft(Y); % Inverse FFT to get back to time domain disp([conv_result; freq_conv_result']); % Display results This code illustrates that the convolution of the two signals in the time domain equals the inverse FFT of their product in the frequency domain.


Is the Nyquist theorem true for high-quality single-mode optical fiber or only for copper wire?

The Nyquist theorem is a property of mathematics and has nothing to do with technology. It says that if you have a function whose Fourier spectrum does not contain any sines or cosines above f, then by sampling the function at a frequency of 2f you capture all the information there is. Thus, the Nyquist theorem is true for all media.


Benefits of Caley hamilton theorem in matrices?

The Cayley-Hamilton (not Caley hamilton) theorem allows powers of the matrix to be calculated more simply by using the characteristic function of the matrix. It can also provide a simple way to calculate the inverse matrix.


Who made initial value theorem?

The initial value theorem is a concept from the field of mathematics, specifically in the study of Laplace transforms. While it doesn't have a single inventor, it is derived from the work of several mathematicians, including Pierre-Simon Laplace, who developed the Laplace transform in the 18th century. The theorem itself relates the behavior of a function at the initial point to its Laplace transform, providing a valuable tool in engineering and physics for solving differential equations.


What do you mean by periodic convolution?

The circular convolution of two aperiodic functions occurs when one of them is convolved in the normal way with a periodic summation of the other function. That situation arises in the context of the Circular convolution theorem. The identical operation can also be expressed in terms of the periodic summations of both functions, if the infinite integration interval is reduced to just one period. That situation arises in the context of the Discrete-time Fourier transform (DTFT) and is also called periodic convolution. In particular, the transform (DTFT) of the product of two discrete sequences is the periodic convolution of the transforms of the individual sequences.