Ill teach you right now, only binary math tho, not the programming langue or anything, just that math.... first use this table 1 2 4 8
now the number 1 is like saying "yes" and 0 is like saying "No"
to make the number 5 you do 1 plus 4 = 5 so we do
do we use 4 yes do we use 2 no do we use 1 yes
so its 101 first one is 4 then 0 is 2 meaning we don't count that
and then 1 again witch is 1 so we add em, 5 so 101 = 5
how to make letters? here is a graph you can use
I forgot to say, that the 1 2 4 8 keeps going just
get the last number and add it with itself like 1 2 4 8 16 32 64 128 and so on
chr(32) 00100000
! chr(33) 00100001
" chr(34) 00100010
# chr(35) 00100011
$ chr(36) 00100100
% chr(37) 00100101
& chr(38) 00100110
' chr(39) 00100111
( chr(40) 00101000
) chr(41) 00101001
* chr(42) 00101010
+ chr(43) 00101011
, chr(44) 00101100
- chr(45) 00101101
. chr(46) 00101110
/ chr(47) 00101111
0 chr(48) 00110000
1 chr(49) 00110001
2 chr(50) 00110010
3 chr(51) 00110011
4 chr(52) 00110100
5 chr(53) 00110101
6 chr(54) 00110110
7 chr(55) 00110111
8 chr(56) 00111000
9 chr(57) 00111001
: chr(58) 00111010
; chr(59) 00111011
< chr(60) 00111100
= chr(61) 00111101
> chr(62) 00111110
? chr(63) 00111111
@ chr(64) 01000000
A chr(65) 01000001
B chr(66) 01000010
C chr(67) 01000011
D chr(68) 01000100
E chr(69) 01000101
F chr(70) 01000110
G chr(71) 01000111
H chr(72) 01001000
I chr(73) 01001001
J chr(74) 01001010
K chr(75) 01001011
L chr(76) 01001100
M chr(77) 01001101
N chr(78) 01001110
O chr(79) 01001111
P chr(80) 01010000
Q chr(81) 01010001
R chr(82) 01010010
S chr(83) 01010011
T chr(84) 01010100
U chr(85) 01010101
V chr(86) 01010110
W chr(87) 01010111
X chr(88) 01011000
Y chr(89) 01011001
Z chr(90) 01011010
[ chr(91) 01011011
\ chr(92) 01011100
] chr(93) 01011101
^ chr(94) 01011110
_ chr(95) 01011111
` chr(96) 01100000
a chr(97) 01100001
b chr(98) 01100010
c chr(99) 01100011
d chr(100) 01100100
e chr(101) 01100101
f chr(102) 01100110
g chr(103) 01100111
h chr(104) 01101000
i chr(105) 01101001
j chr(106) 01101010
k chr(107) 01101011
l chr(108) 01101100
m chr(109) 01101101
n chr(110) 01101110
o chr(111) 01101111
p chr(112) 01110000
q chr(113) 01110001
r chr(114) 01110010
s chr(115) 01110011
t chr(116) 01110100
u chr(117) 01110101
v chr(118) 01110110
w chr(119) 01110111
x chr(120) 01111000
y chr(121) 01111001
z chr(122) 01111010
{ chr(123) 01111011
| chr(124) 01111100
} chr(125) 01111101
~ chr(126) 01111110
n/a chr(127) 01111111
Chat with our AI personalities