120
60,2
30,2,2
15,2,2,2
5,3,2,2,2
120 60,2 30,2,2 15,2,2,2 5,3,2,2,2
60,2 30,2,2 15,2,2,2 5,3,2,2,2
Use a factor tree. 120 60,2 30,2,2 15,2,2,2 5,3,2,2,2
As a product of its prime factors: 2*2*2*3*5 = 120
Use a factor tree. 120 60,2 30,2,2 15,2,2,2 5,3,2,2,2
The prime factors of 120 are 2, 3 and 5.
60,230,2,215,2,2,25,3,2,2,21202,602,2,302,2,2,152,2,2,3,5
To find the largest odd natural number that is a factor of 120, we first need to factorize 120 into its prime factors, which are 2^3 * 3 * 5. Since we are looking for an odd factor, we can ignore the factor of 2. The largest odd factor of 120 is then 3, as it is the largest odd prime factor present in the prime factorization of 120.
prime factor, 5
120 60,2 30,2,2 15,2,2,2 5,3,2,2,2
120 60,2 30,2,2 15,2,2,2 5,3,2,2,2
Five