One way is to append an identity matrix to the right of the original matrix. So, given an n x n matrix A, create an n x 2n matrix A|I.
Using only row operations, convert A into an identity matrix. Then the right hand side of A|I will be A-1
Alternatively, calculate the determinant |A|
Also calculate the determinants of all n-1 x n-1 sub-matrices where sijdenotes the determinant of the submatrix created when row i and column j are deleted.
Let bij= sij*(-1)i+j/|A|.
Then the matrix B = {bij} = A-1.
(I-A)-1 is the Leontief inverse matrix of matrix A (nxn; non-singular).
Let A by an nxn non-singular matrix, then A-1 is the inverse of A. Now (A-1 )-1 =A So the answer is yes.
If an identity matrix is the answer to a problem under matrix multiplication, then each of the two matrices is an inverse matrix of the other.
No. A square matrix has an inverse if and only if its determinant is nonzero.
From Wolfram MathWorld: The inverse of a square matrix A, sometimes called a reciprocal matrix, is a matrix A-1 such that AA-1=I where I is the identity matrix.
it is used to find the inverse of the matrix. inverse(A)= (adj A)/ mod det A
The fact that the matrix does not have an inverse does not necessarily mean that none of the variables can be found.
That is called an inverse matrix
A rectangular (non-square) matrix.
it doesnt have an inverse since only square matrices have an inverse
You can factorize the matrix using LU or LDLT factorization algorithm. inverse of a diagonal matrix (D) is really simple. To find the inverse of L, which is a lower triangular matrix, you can find the answer in this link.www.mcs.csueastbay.edu/~malek/TeX/Triangle.pdfSince (A T )-1 = (A-1 )T for all matrix, you'll just have to find inverse of L and D.
You can factorize the matrix using LU or LDLT factorization algorithm. inverse of a diagonal matrix (D) is really simple. To find the inverse of L, which is a lower triangular matrix, you can find the answer in this link.www.mcs.csueastbay.edu/~malek/TeX/Triangle.pdfSince (A T )-1 = (A-1 )T for all matrix, you'll just have to find inverse of L and D.