For some functions the answer is relatively straightforward and you have a formula. For other functions, it may be possible, using numerical methods, to calculate the area under the function's curve. This will be a numerical answer to the problem under specific boundary conditions.
It is an inverse function of a derivative, also known as an integral.
That means that either the function is equal to zero everywhere (y = 0), or it is the exponential function (y = ex).
The general formula for powers doesn't work in this case, because there will be a zero in the denominator. The antiderivative of 1/x is ln(x), that is, the natural logarithm of x.
The antiderivative of 1/x is ln(x) + C. That is, to the natural (base-e) logarithm, you can add any constant, and still have an antiderivative. For example, ln(x) + 5. These are the only antiderivatives; there are no different functions that have the same derivatives. This is valid, in general, for all antiderivatives: if you have one antiderivative of a function, all other antiderivatives are obtained by adding a constant.
Anti-derivatives are a part of the integrals in the calculus field. According to the site Chegg, it is best described as the "inverse operation of differentiation."
The antiderivative of a function which is equal to 0 everywhere is a function equal to 0 everywhere.
It is an inverse function of a derivative, also known as an integral.
For example, the derivate of x2 is 2x; then, an antiderivative of 2x is x2. That is to say, you need to find a function whose derivative is the given function. The antiderivative is also known as the indifinite integral. If you can find an antiderivative for a function, it is fairly easy to find the area under the curve of the original function - i.e., the definite integral.
An antiderivative, F, is normally defined as the indefinite integral of a function f. F is differentiable and its derivative is f.If you do not assume that f is continuous or even integrable, then your definition of antiderivative is required.
yes, look at the function f(x)=3x^2 The antiderivative is x^3+C where C is the constant and is more than one value for C. In fact, 3x^2 will have an infinite number of antiderivatives.
The antiderivative of 2x is x2.
That means that either the function is equal to zero everywhere (y = 0), or it is the exponential function (y = ex).
The way to disprove an antiderivative is to simply differentiate the function and see if it matches the integral expression. Remember that an antiderivative expression must include a term often coined "C-" an arbitrary constant. For example, ∫(x^3 +14x)dx= (1/4)X^4+ 7X^2 +C. To verify that this is correct, take the derivative. You get x^3 +14x.
There are two main definitions. One defines the integral of a function as an "antiderivative", that is, the opposite of the derivative of a function. The other definition refers to an integral of a function as being the area under the curve for that function.
The general formula for powers doesn't work in this case, because there will be a zero in the denominator. The antiderivative of 1/x is ln(x), that is, the natural logarithm of x.
The antiderivative of 1/x is ln(x) + C. That is, to the natural (base-e) logarithm, you can add any constant, and still have an antiderivative. For example, ln(x) + 5. These are the only antiderivatives; there are no different functions that have the same derivatives. This is valid, in general, for all antiderivatives: if you have one antiderivative of a function, all other antiderivatives are obtained by adding a constant.
The inverse operation to the derivative. Also called the integral. If you're given the derivative of a function, you can find the function again by performing the antiderivative. Many answers will be possible, all differing by a single number, so you normally add a general constant to the end. Example : The derivative of 6x^2 is 12x. The antiderivative of 12x is 6x^2 + any number.