Study guides

☆☆

Q: How does an exponential function differ from a power function graphically?

Write your answer...

Submit

Still have questions?

Related questions

A power function has the equation f(x)=x^a while an exponential function has the equation f(x)=a^x. In a power function, x is brought to the power of the variable. In an exponential function, the variable is brought to the power x.

y = ax, where a is some constant, is an exponential function in x y = xa, where a is some constant, is a power function in x If a > 1 then the exponential will be greater than the power for x > a

Assuming that b > 0, it is an inverse power function or an inverse exponential function.

You can use the ^ character or the POWER function. To do 10² you can do it in either of the ways that follow: =POWER(10,2) =10^2

If the signal is not bounded by a step function, then an exponential signal is neither a power nor an energy signal. So the answer is neither.

Both of these functions are found to represent physical events in nature. A common form of the power function would be the parabola (power of 2). One example would be calculating distance traveled of an object with constant acceleration. d = V0*t + (a/2)*tÂ². The exponential function describes many things, such as exponential decay: like the voltage change in a capacitor & radioactive element decay. Also exponential growth (such as compound interest growth).

In a polynomial function, the variable x is raised to some integer power. f(x) = 5x³ + 8x⁵ g(x) = (x + 5)² In an exponential function, some real number is raised to the power of variable x or some function of x f(x) = 5ˣ g(x) = eˣ⁺²

You can use the ^ key. So to get 10 to the power of 2, you would type:=10^2You could also use the Power function to do the same thing:=POWER(10,2)

The exponential function - if it has a positive exponent - will grow quickly towards positive values of "x". Actually, for small coefficients, it may also grow slowly at first, but it will grow all the time. At first sight, such a function can easily be confused with other growing (and quickly-growing) functions, such as a power function.

8², that is the exponential form. :)

The exponential function is e to the power x, where "x" is the variable, and "e" is approximately 2.718. (Instead of "e", some other number, greater than 1, may also be used - this might still be considered "an" exponential function.) The logarithmic function is the inverse function (the inverse of the exponential function).The exponential function, is the power function. In its simplest form, m^x is 1 (NOT x) multiplied by m x times. That is m^x = m*m*m*...*m where there are x lots of m.m is the base and x is the exponent (or power or index). The laws of indices allow the definition to be extended to negative, rational, irrational and even complex values for both m and x.There is a special value of m, the Euler number, e, which is a transcendental number which is approx 2.71828... [e is to calculus what pi is to geometry]. Although all functions of the form y = m^x are exponential functions, "the" exponential function is y = e^x.Finally, if y = e^x then x = ln(y): so x is the natural logarithm of y to the base e. As with the exponential functions, the logarithmic function function can have any positive base, but e and 10 are the commonly used one. Log(x), without any qualifying feature, is used to represent log to the base 10 while logx where is a suffixed number, is log to the base b.

A polynomial is a function or expression that has two or more algebraic terms. Usually, each term has a different exponential power.

People also asked