The exponential function is e to the power x, where "x" is the variable, and "e" is approximately 2.718. (Instead of "e", some other number, greater than 1, may also be used - this might still be considered "an" exponential function.) The logarithmic function is the inverse function (the inverse of the exponential function).
The exponential function, is the power function. In its simplest form, m^x is 1 (NOT x) multiplied by m x times. That is m^x = m*m*m*...*m where there are x lots of m.
m is the base and x is the exponent (or power or index). The laws of indices allow the definition to be extended to negative, rational, irrational and even complex values for both m and x.
There is a special value of m, the Euler number, e, which is a transcendental number which is approx 2.71828... [e is to calculus what pi is to geometry]. Although all functions of the form y = m^x are exponential functions, "the" exponential function is y = e^x.
Finally, if y = e^x then x = ln(y): so x is the natural logarithm of y to the base e. As with the exponential functions, the logarithmic function function can have any positive base, but e and 10 are the commonly used one. Log(x), without any qualifying feature, is used to represent log to the base 10 while logx where is a suffixed number, is log to the base b.
The exponential function is e to the power x, where "x" is the variable, and "e" is approximately 2.718. (Instead of "e", some other number, greater than 1, may also be used - this might still be considered "an" exponential function.) The logarithmic function is the inverse function (the inverse of the exponential function).
The exponential function, is the power function. In its simplest form, m^x is 1 (NOT x) multiplied by m x times. That is m^x = m*m*m*...*m where there are x lots of m.
m is the base and x is the exponent (or power or index). The laws of indices allow the definition to be extended to negative, rational, irrational and even complex values for both m and x.
There is a special value of m, the Euler number, e, which is a transcendental number which is approx 2.71828... [e is to calculus what pi is to geometry]. Although all functions of the form y = m^x are exponential functions, "the" exponential function is y = e^x.
Finally, if y = e^x then x = ln(y): so x is the natural logarithm of y to the base e. As with the exponential functions, the logarithmic function function can have any positive base, but e and 10 are the commonly used one. Log(x), without any qualifying feature, is used to represent log to the base 10 while logx where is a suffixed number, is log to the base b.
No. The inverse of an exponential function is a logarithmic function.
Logarithmic Function
an exponential function flipped over the line y=x
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.
Apex: false A logarithmic function is not the same as an exponential function, but they are closely related. Logarithmic functions are the inverses of their respective exponential functions. For the function y=ln(x), its inverse is x=ey For the function y=log3(x), its inverse is x=3y For the function y=4x, its inverse is x=log4(y) For the function y=ln(x-2), its inverse is x=ey+2 By using the properties of logarithms, especially the fact that a number raised to a logarithm of base itself equals the argument of the logarithm: aloga(b)=b you can see that an exponential function with x as the independent variable of the form y=f(x) can be transformed into a function with y as the independent variable, x=f(y), by making it a logarithmic function. For a generalization: y=ax transforms to x=loga(y) and vice-versa Graphically, the logarithmic function is the corresponding exponential function reflected by the line y = x.
If y is an exponential function of x then x is a logarithmic function of y - so to change from an exponential function to a logarithmic function, change the subject of the function from one variable to the other.
No, an function only contains a certain amount of vertices; leaving a logarithmic function to NOT be the inverse of an exponential function.
No. The inverse of an exponential function is a logarithmic function.
output
input
Yes.
Logarithmic Function
The exponential function, in the case of the natural exponential is f(x) = ex, where e is approximately 2.71828. The logarithmic function is the inverse of the exponential function. If we're talking about the natural logarithm (LN), then y = LN(x), is the same as sayinig x = ey.
The y-axis on a semi logarithmic chart is exponential. This way, when an exponential function is depicted in the chart, it will evolve as a linear function. You often do this to proove that the function is exponential and/or as a tool to help you find the equation for the function. For more see: http://www.answers.com/topic/semi-logarithmic-plot
an exponential function flipped over the line y=x
Yes, y = loga(x) means the same as x=ay.
Since the logarithmic function is the inverse of the exponential function, then we can say that f(x) = 103x and g(x) = log 3x or f-1(x) = log 3x. As we say that the logarithmic function is the reflection of the graph of the exponential function about the line y = x, we can also say that the exponential function is the reflection of the graph of the logarithmic function about the line y = x. The equations y = log(3x) or y = log10(3x) and 10y = 3x are different ways of expressing the same thing. The first equation is in the logarithmic form and the second equivalent equation is in exponential form. Notice that a logarithm, y, is an exponent. So that the question becomes, "changing from logarithmic to exponential form": y = log(3x) means 10y = 3x, where x = (10y)/3.