answersLogoWhite

0

The central angle is double the measure.

User Avatar

Wiki User

13y ago

What else can I help you with?

Related Questions

How do you find the measure of the central angle?

the measure of the inscribed angle is______ its corresponding central angle


An angle whose vertex is the center of a circle is a?

Inscribed angle


Explain the difference between a central angle and an inscribed angle?

A central angle has its vertex at the center of a circle, and two radii form the Arms. Central angle AOC is described as subtended by the chords AC and by the arc AC. An inscribed angle has its vertex on the circle, and two chords form the arms. Inscribed angle ABC is also described as subtended by the chord AC and by the arc AC.


An inscribed angle is formed by two radii?

false


What is the relation between the arc length and angle for a sector of a circle?

A sector is the area enclosed by two radii of a circle and their intercepted arc, and the angle that is formed by these radii, is called a central angle. A central angle is measured by its intercepted arc. It has the same number of degrees as the arc it intercepts. For example, a central angle which is a right angle intercepts a 90 degrees arc; a 30 degrees central angle intercepts a 30 degrees arc, and a central angle which is a straight angle intercepts a semicircle of 180 degrees. Whereas, an inscribed angle is an angle whose vertex is on the circle and whose sides are chords. An inscribed angle is also measured by its intercepted arc. But, it has one half of the number of degrees of the arc it intercepts. For example, an inscribed angle which is a right angle intercepts a 180 degrees arc. So, we can say that an angle inscribed in a semicircle is a right angle; a 30 degrees inscribed angle intercepts a 60 degrees arc. In the same or congruent circles, congruent inscribed angles have congruent intercepted arcs.


How are inscribed angles different from central angles?

Inscribed angles and central angles differ in their definitions and the way they relate to a circle. A central angle is formed by two radii extending from the center of the circle to the circumference, while an inscribed angle is formed by two chords that meet at a point on the circle itself. The measure of a central angle is equal to the arc it subtends, whereas an inscribed angle measures half of the arc it intercepts. This fundamental difference affects their geometric properties and applications in circle-related problems.


How do inscribed angles help you understand angles that occur outside the circle?

why dont the central angle change regardless the size of the circle


An inscribed angle is an angle formed by two chords that share an endpoint.?

An inscribed angle is formed by two chords in a circle that meet at a common endpoint on the circle's circumference. The vertex of the angle lies on the circle, and the sides of the angle are segments of the chords. The measure of an inscribed angle is half the measure of the arc that it intercepts. This property is a key characteristic of inscribed angles in circle geometry.


An angle that opens to the interior of the circle from a vertex on the circle?

This is the definition of an inscribed angle in geometry. An inscribed angle is formed by two chords in a circle that also share a common point called the vertex.


The central angle of a minor arc is than inscribed angle of its corresponding major arc?

This cannot be answered. This does not make any sense.


How do you work out angles in a semi-circle?

An inscribed angle is an angle formed by two chords in a circle which have a common endpoint. This common endpoint forms the vertex of the inscribed angle.The other two endpoints define an intercepted arc on the circle Any angle inscribed in a semi-circle is a right angle. The proof is simply that the intercepted arc is 180 so the angle must be half of that or 90 degrees.


What is a inscribed angle?

An inscribed angle is an angle with its vertex on a circle and with sides that contain chords of the circle.