This is the definition of an inscribed angle in geometry. An inscribed angle is formed by two chords in a circle that also share a common point called the vertex.
inscribed angle
The maximum.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
maximum point :)
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
inscribed angle
Opening up, the vertex is a minimum.
The maximum.
The equation of a parabola that opens left or right with its vertex at the point ((h, v)) is given by ((y - v)^2 = 4p(x - h)), where (p) is the distance from the vertex to the focus. If (p > 0), the parabola opens to the right, and if (p < 0), it opens to the left.
The maximum point.
maximum point :)
maximum point :)
To determine if a parabola opens up or down, look at the coefficient of the quadratic term in its equation, typically in the form (y = ax^2 + bx + c). If the coefficient (a) is positive, the parabola opens upwards; if (a) is negative, it opens downwards. You can also visualize the vertex: if the vertex is the lowest point, it opens up, and if it's the highest point, it opens down.
It is (y - b)^2 = ax + c
Vertex
The vertex of a parabola that opens down is called the maximum point. This point represents the highest value of the function described by the parabola, as the graph decreases on either side of the vertex. In a quadratic equation of the form (y = ax^2 + bx + c) where (a < 0), the vertex can be found using the formula (x = -\frac{b}{2a}). The corresponding (y)-value can then be calculated to determine the vertex's coordinates.
focus , directrix