answersLogoWhite

0

An isosceles triangle has two equal sides and two equal angles

User Avatar

Wiki User

8y ago

What else can I help you with?

Continue Learning about Geometry

What is the SAS postulate?

The SAS Postulate states if two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.


What are the four congruence postulates?

The postulates that involve congruence are the following :SSS (Side-Side-Side) Congruence Postulate - If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.SAS (Side-Angle-Side) Congruence Postulate - If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.ASA (Angle-Side-Angle) Congruence Postulate - If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.The two other congruence postulates are :AA (Angle-Angle) Similarity Postulate - If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.


Postulate that proves two triangles congruent using all three sides?

The Side Side Side or SSS postulate says f three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.


Which postulate or theorem verifies the congruence of these triangles?

To verify the congruence of triangles, you can use several postulates or theorems, such as the Side-Angle-Side (SAS) Postulate, which states that if two sides of one triangle are equal to two sides of another triangle and the included angle is also equal, then the triangles are congruent. Alternatively, the Angle-Side-Angle (ASA) Postulate can be used if two angles and the included side of one triangle are equal to the corresponding parts of another triangle. Other methods include the Side-Side-Side (SSS) Postulate and the Angle-Angle-Side (AAS) Theorem. The specific postulate or theorem applicable depends on the given information about the triangles.


What must be shown to be congruent in order to say that the triangles are congruent by SAS?

Two sides and the included angle of one triangle must be congruent to two sides and the included angle of the other.

Related Questions

If two triangles have a congruent angle and two congruent sides then are the triangles guaranteed to be congruent?

Only if the congruent angle is the angle between the two congruent sides (SAS postulate).


What postulate states that two triangles are congruent if two sides and an included angle are congruent?

The SAS (Side-Angle-Side) postulate.


What is the SAS postulate?

The SAS Postulate states if two sides and the included angle of a triangle are congruent to two sides and the included angle of another triangle, then the two triangles are congruent.


Is this statement true or falseIf two sides and one angle of one triangle are congruent to two sides and one angle of another triangle, then the triangles are congruent by the Side-Angle-Side Postulate?

false


Which postulate proves that trianglePNQ and triangleQRP are congruent?

The postulate that proves triangles PNQ and QRP are congruent is the Side-Angle-Side (SAS) Congruence Postulate. If two sides of one triangle are equal to two sides of another triangle, and the included angle between those sides is also equal, then the triangles are congruent. In this case, if sides PN and QR are equal, sides PQ and RP are equal, and angle PQN is equal to angle QRP, then triangle PNQ is congruent to triangle QRP.


What is ass or ssa congruence postulate?

The ASS postulate would be that:if an angle and two sides of one triangle are congruent to the corresponding angle and two sides of a second triangle, then the two triangles are congruent.The SSA postulate would be similar.Neither is true.


If ABC DEF is congruent name the postulate that applies?

If triangle ABC is congruent to triangle DEF, the postulate that applies is the Side-Angle-Side (SAS) Congruence Postulate. This postulate states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, then the triangles are congruent. Other applicable postulates could include Side-Side-Side (SSS) or Angle-Side-Angle (ASA), depending on the specific information given.


If you are going to use the SAS postulate to prove these two triangles congruent what additional information do you need?

To use the SAS (Side-Angle-Side) postulate to prove two triangles congruent, you need to establish that you have two sides of one triangle that are equal in length to two sides of the other triangle, along with the included angle between those two sides being congruent. Specifically, you need the lengths of the two sides for both triangles and the measure of the angle between those sides in at least one of the triangles. If this information is provided, you can apply the SAS postulate effectively.


What are the four congruence postulates?

The postulates that involve congruence are the following :SSS (Side-Side-Side) Congruence Postulate - If three sides of one triangle are congruent to three sides of another triangle, then the triangles are congruent.SAS (Side-Angle-Side) Congruence Postulate - If two sides and the included angle of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.ASA (Angle-Side-Angle) Congruence Postulate - If two angles and the included side of one triangle are congruent to the corresponding parts of another triangle, the triangles are congruent.The two other congruence postulates are :AA (Angle-Angle) Similarity Postulate - If two angles of one triangle are congruent to two angles of another triangle, the triangles are similar.Corresponding Angles Postulate - If two parallel lines are cut by a transversal, then the pairs of corresponding angles are congruent.


Is MNO PQR If so name the congruence postulate that applies.?

To determine if triangle MNO is congruent to triangle PQR, we need to compare their corresponding sides and angles. If they are equal in length and measure, then MNO is congruent to PQR. The specific congruence postulate that could apply is the Side-Angle-Side (SAS) postulate, which states that if two sides and the included angle of one triangle are equal to two sides and the included angle of another triangle, the triangles are congruent.


Is UVW congruent to XYZ If so name the postulate that applies?

To determine if triangles UVW and XYZ are congruent, we need information about their corresponding sides and angles. If we know that all three sides of triangle UVW are equal to the three sides of triangle XYZ (SSS postulate), or if two sides and the included angle of one triangle are equal to two sides and the included angle of the other (SAS postulate), then they are congruent. Without specific measurements or relationships, we cannot conclude congruence.


What postulate or theorem would you use to prove the triangles are congruent?

To prove that two triangles are congruent, you can use the Side-Angle-Side (SAS) Postulate. This states that if two sides of one triangle are equal to two sides of another triangle, and the angle between those sides is also equal, then the triangles are congruent. Alternatively, the Angle-Side-Angle (ASA) Theorem can also be used if two angles and the included side of one triangle are equal to the corresponding parts of another triangle.