Because they are square/cube of an integer.
No, 2 is neither a perfect square nor a perfect cube.
It is both because 1,000,000 is a perfect cube and a perfect square number
There is not a number that is a perfect square and perfect cube between 1 and 25.There is not a number that is a perfect square and perfect cube between 1 and 25.There is not a number that is a perfect square and perfect cube between 1 and 25.There is not a number that is a perfect square and perfect cube between 1 and 25.
an integer
The square root of a perfect square and the cube root of a perfect cube is always an integer. A perfect square is a number multiplied by itself. A perfect cube is a number multiplied by itself twice. Example: 3 x 3 is 9, the square of 3 3 x 3 x 3 is 27, the cube of 3
324 is a perfect square of 18. But it's not a perfect cube.
729, cube of 9 and square of 27
No but it is a perfect square
No, it's a perfect cube.
0. 0 is a perfect square as well as a perfect cube. And 011 = 0. The next number will be 1.
To find a number that is both a perfect square and a perfect cube, we must solve x2 = x3 over x ∈Z+. The only two solutions to this equation are 0 and 1, or x = {0,1}. Therefore, zero and one are the only two numbers that are both perfect squares and perfect cubes. --In easier terms: a perfect square is a number that can be "square rooted" and have no remainder. Like, 144. The square root is 12 therefore 144 is a perfect square. A perfect Cube is the same except that it must be "cubed rooted". Like 27. The cube root of this number is 3 therefore 27 is a perfect cube.