Ten.
Decimal (more formally, binary coded decimal) values store numeric information as digits encoded using the four bit binary equivalents: 0 (0000) to 9 (1001). That means a single byte can hold values between 0 and 99. But simply using the same byte to hold a binary value will yield values between 0 and 255 (or –128 and +127).
The binary number 10101010 is equivalent, in decimal representation, to 128 + 32 + 8 + 2 = 170. But this answer assumes that the given number is binary - an assumption for which there is no real justification. Besides, the relationship is an equivalence, which is not quite "the same thing".
DAA (Decimal Adjust for Addition) is used following a normal ADD, when it is known that the input data represented BCD (Binary Coded Decimal). It compensates for the half byte carry that might occur because the BCD format is not the same as the binary format.
The same as 25/5 in decimal.
3110 = 111112
FF in Hex is the same as 255 in Decimal, 377 in Octal and 11111111 in Binary FF in Hex is the same as 255 in Decimal, 377 in Octal and 11111111 in Binary
no they are not same
16 is the 4th power of 2. So a hexadecimal number is converted to binary by replacing each hex digit by the 4-bit binary number having the same value. Conversely, in converting binary to hexadecimal, we group every 4 bits starting at the decimal (binary?) point and replace it with the equivalent hex digit. For example, the hexadecimal number 3F9 in binary is 1111111001, because 3 in binary is 11, F (decimal 15) is 1111, and 9 is 1001.
Yes.
Octal codes are often used to write the numerical value of a binary number because it is easier to convert from binary to octal, instead of binary to decimal. You can convert to octal on sight, and it simply requires grouping the binary bits into groups of three, whereas converting to decimal requires repeated division by 10102 or 1010. Actually, grouping into three bits is the same as dividing by 1002 or 810 so the process is really the same. Divide by 8 to get octal. Divide by 10 to get decimal.
The same as real numbers are expressed in decimal, except only the digits 0 and 1 are used (instead of 0 to 9) and the separator between the integer and fraction part is called the binary point (instead of the decimal point). The sign if needed is the same as in decimal.