answersLogoWhite

0


Best Answer

Assuming you mean sum and not some, the answer is No.

User Avatar

Wiki User

13y ago
This answer is:
User Avatar

Add your answer:

Earn +20 pts
Q: Is it possible for the magnitude of the some of two vectors to be larger than the sum of the magnitude of the vectors?
Write your answer...
Submit
Still have questions?
magnify glass
imp
Continue Learning about Math & Arithmetic

Is it possible to add a scalar to a vector?

It is not possible the addition of scalars as well as vectors because vector quantities are magnitude as well as direction and scalar quantities are the only magnitude; they have no directions at all. Addition is possible between scalar to scalar and vector to vector. Under some circumstances, you may be able to treat scalar quantities as being along some previously undefined dimension of a vector quantity, and add them that way. For example, you can treat time as a vector along the t-axis and add it to an xyz position vector in 3-space to come up with a four-dimensional spacetime vector.


Why are some vectors pseudo vectors and some real vectors?

Answer: There are no "pseudo vectors" there are pseudo "rules". For example the right hand rule for vector multiplication. If you slip in the left hand rule then the vector becomes a pseudo vector under the right hand rule. Answer: A pseudo vector is one that changes direction when it is reflected. This affects all vectors that represent rotations, as well as, in general, vectors that are the result of a cross product.


How do you add vectors using the component method?

1) Separate the vectors into components (if they are not already expressed as components). 2) Add each of the components separately. 3) If required, convert the vectors back to some other form. For twodimensional vectors, that would polar form.


What is the formula for calculating the resultant of two vectors of same magnitude and how?

Divide each vector into components, that is, find components in the x, y and z direction that add up to give the vector. This requires some basic trigonometry. Then, add the the components. * * * * * In 2-d the answer is as follows: Suppose the two vectors have magnitude R and are angles A and B to the x-axis. Therefore, the horizontal components of the two vectors are RcosA and RcosB so that the resultant has horizontal component RcosA + RcosB XR = 2R*cos[(A+B)/2]*cos[(A-B)/2] The vertical components of the original two vectors are RsinA and RsinB so that the resultant has horizontal component RsinA + RsinB YR = 2R*sin[(A+B)/2]*cos[(A-B)/2] From these two equations, the magnitude of the resultant is sqrt(XR2 + YR2) = sqrt{4R2*cos2[(A-B)/2]} = 2R*cos[(A-B)/2] and the direction of the resultant is arctan(YR/XR) = arctan{[(A+B)/2]} = (A+B)/2 or equivalent


How to find the direction of vector when the magnitude is given?

You can't derive the direction only from the magnitude. A vector with the same magnitude can have different directions. You need some additional information to make conclusions about the direction.You can't derive the direction only from the magnitude. A vector with the same magnitude can have different directions. You need some additional information to make conclusions about the direction.You can't derive the direction only from the magnitude. A vector with the same magnitude can have different directions. You need some additional information to make conclusions about the direction.You can't derive the direction only from the magnitude. A vector with the same magnitude can have different directions. You need some additional information to make conclusions about the direction.

Related questions

What are some of the possible vectors for Ebola Zaire?

monkeys


As momentum of an object decreases what happens to the veocity?

An object that decreases its speed also decreases the magnitude of its velocity and decreases the magnitude of its momentum. Momentum is mass time velocity. Less velocity, less momentum. Technically, velocity is a vector and therefor momentum is a vector. One can speak of smaller or larger magnitudes of a vector, but not smaller and larger vectors because vectors have magnitude and direction. Speed is the magnitude of velocity.


Is it possible to add a scalar to a vector?

It is not possible the addition of scalars as well as vectors because vector quantities are magnitude as well as direction and scalar quantities are the only magnitude; they have no directions at all. Addition is possible between scalar to scalar and vector to vector. Under some circumstances, you may be able to treat scalar quantities as being along some previously undefined dimension of a vector quantity, and add them that way. For example, you can treat time as a vector along the t-axis and add it to an xyz position vector in 3-space to come up with a four-dimensional spacetime vector.


Examples of some quantities that are scalar and vectors?

A vector has a magnitude and a direction. A scalar is only a magnitude. For example, If I say that I am going 60 m/s, that I have described my speed as a scalar value. If I say I am going 60 m/s due east, I have described both my speed and direction and therefore it is a vector.


How vectors quantities be represented graphically?

They can be represented by a line made with a #2 pencil. The length of the line is made proportional to the magnitude of the vector, and some kind of identifying mark is made on or near one end of the line to show the direction of the vector.


What are some considered vectors?

Velocity and Force


Why are some vectors pseudo vectors and some real vectors?

Answer: There are no "pseudo vectors" there are pseudo "rules". For example the right hand rule for vector multiplication. If you slip in the left hand rule then the vector becomes a pseudo vector under the right hand rule. Answer: A pseudo vector is one that changes direction when it is reflected. This affects all vectors that represent rotations, as well as, in general, vectors that are the result of a cross product.


Why are small angles called as vectors?

Small angles are NOT called vectors. The question appears to be based on some misunderstanding.


What is the components of a vector?

Its either reality based (vertical is up-down, horizontal is ground distance) or it's purely arbitrary.


What are some vectors?

Typical uses of vectors include force, position, velocity, acceleration, torque, rotational movement, and others.


What are some vectors of pollination?

Vectors of pollination include wind, insects and animals. All of these vectors help to transport or move pollen to the reproductive systems of other plants, thus encouraging diversity.


How can simultaneous vectors be combined to form a resultant vector using pencil and paper?

Start with a point O. Draw a line OA in the direction of the first vector and whose length represents the magnitude of that vector (to some scale). From A, draw the line AB in the direction of the second vector and whose length represents the magnitude of that second vector (to the same scale). Then the direction and length of the straight line OB represent the direction and (to the same scale) the magnitude of the resultant vector.