It is important to make sure your random sample is random in order to make sure the results are accurate, and to prevent experimenter bias.
The most important step to ensure accuracy in a sample is random selection. By randomly choosing samples from the population, you minimize bias and increase the likelihood that your sample is representative of the entire population. This helps to draw reliable conclusions and make valid inferences based on the sample data.
The answer is Random Sample
random sample is a big sample and convenience sample is small sample
It helps you nawser
Social scientists most often use a random sample
A simple random sample.
There are circumstances when it is important and others when it is not. If, for example, you wanted a sample of all schools in the country, it would make more sense to go for cluster sampling. A lot of market research work will require quota sampling. So the supremacy of a random sample is a myth.
simple random sample is to select the sample in random method but systematic random sample is to select the sample in particular sequence (ie 1st 11th 21st 31st etc.)• Simple random sample requires that each individual is separately selected but systematic random sample does not selected separately.• In simple random sampling, for each k, each sample of size k has equal probability of being selected as a sample but it is not so in systematic random sampling.
The main difference is that the way of selecting a sample Random sample purely on randomly selected sample,in random sample every objective has a an equal chance to get into sample but it may follow heterogeneous,to over come this problem we can use stratified Random Sample Here the difference is that random sample may follow heterogeneity and Stratified follows homogeneity
A random distribution is a random sample set displayed in the form of a bell curve. See random sample set.
A random sample should be taken from an entire population.